Semiconductors Current Carriers & Fermi Level

Demonstrative Video


Carrier Concentration in Intrinsic Semiconductors

\[\begin{aligned} {\color{teal}{\textbf{N-type}}} & \\ E_F& =E_C+k T \ln \frac{N_C}{N_D} \\ N_D&=N_C \cdot \mathrm{e}^{-\left(E_C-E_F\right) / k T} \\ \end{aligned}\] \[\begin{aligned} {\color{blue}{\textbf{P-type}}} & \\ E_F&=E_V+k T \ln \frac{N_V}{N_A} \\ N_A&=N_V \cdot \mathrm{e}^{-\left(E_F-E_V\right) / k T} \end{aligned}\]

image

Problem-1

\[\begin{aligned} \text{For N-type material:}~E_F & = E_C - kT\operatorname{ln}\dfrac{N_C}{N_D} \\ \Rightarrow ~ \left(E_C - E_F\right) & = kT \operatorname{ln}\dfrac{N_C}{N_D}\\ \Rightarrow~0.3 & = 300k\operatorname{ln}\dfrac{N_C}{N_D} \qquad (1)\\ \text{Also}~E_C-E_{F1} & = 360k\operatorname{ln}\dfrac{N_C}{N_D} \qquad (2)\\ \Rightarrow~\dfrac{E_C-E_{F1}}{0.3} & = \dfrac{360}{300} \\ \Rightarrow~E_C-E_{F1} & = \dfrac{360}{300}\times 0.3 = 0.36~\mathrm{eV}~(\text{Ans}) \end{aligned}\]

Problem-2

\[\begin{aligned} E_F & = E_v +kT \operatorname{ln} \dfrac{N_V}{N_A} \Rightarrow (E_F-E_V) = kT \operatorname{ln}\dfrac{N_V}{N_A} \\ T=300^{\circ}K \Rightarrow 0.3 & = 300k\operatorname{ln}\dfrac{N_V}{N_A} \qquad (1) \\ T=350^{\circ}K \Rightarrow (E_{F1}-E_V) & = 350k\operatorname{ln}\dfrac{N_V}{N_A} \qquad (2) \\ \text{From (1) and (2)} & \\ (E_{F1}-E_V) & = \dfrac{350}{300}\times 0.3=0.35~\mathrm{eV}\\ T=400^{\circ}K \Rightarrow (E_{F2}-E_V) & = 400k\operatorname{ln}\dfrac{N_V}{N_A} \qquad (3) \\ \Rightarrow~ \dfrac{E_{F2}-E_V}{0.3} & = \dfrac{400}{300} \Rightarrow~ (E_{F2}-E_V) = \dfrac{400}{300}\times 0.3 = 0.4~\mathrm{eV} \end{aligned}\]