\[\begin{aligned}
n &=\int_{E_c}^{\infty} N(E) f(E) \mathrm{d} E \\
f(E) &=\mathrm{e}^{-\left(E-E_F\right) / k T} \quad
\text{for}~ E \geq E_C, ~E-E_F>>k T \\
n &=\int_{E_c}^{\infty}
\gamma\left(E-E_C\right)^{\frac{1}{2}} \mathrm{e}^{-\left(E - E_F\right)
/ k T} \mathrm{~d} E \\
n &=N_C \cdot \mathrm{e}^{-\left(E_c-E_F\right) / k T}
\\
N_C &=2\left(\frac{2 \pi m_n k T}{h^2}\right)^{3 /
2}\left(1.60 \times 10^{-19}\right)^{3 / 2}
\end{aligned}\]
\(m_n\)Concentration of electrons in conduction band
is the maximum
valence band energy, the density of states is If
\[\begin{aligned}
1-f(E) &=\frac{\mathrm{e}^{\left(E-E_F\right) / k
T}}{1+\mathrm{e}^{\left(E-E_F\right) / k
T}}=\mathrm{e}^{-\left(E_F-E\right) / k T} \quad E_F-E>>k \text {
for } E \leq E_V \\
p &=\int_{-\infty}^{E_v} \gamma\left(E_V-E\right)^{1 /
2} \mathrm{e}^{-\left(E_F-E\right) / k T} \mathrm{~d} E \\
p &=N_v \cdot \mathrm{e}^{\left(E_F-E_v\right) / k T} \\
N_v &=2\left(\frac{2 \pi m_p k T}{h^2}\right)^{3 /
2}\left(1.60 \times 10^{-19}\right)^{3 / 2}
\end{aligned}\]
From the equation, at the centre of the
forbidden energy band, Fermi level is presentFermi level of an
intrinsic semiconductor:
Fermi level of an
extrinsic semiconductor:
\[\begin{aligned}
{\color{teal}{\textbf{N-type}}} & \\
E_F& =E_C+k T \ln \frac{N_C}{N_D} \\
N_D&=N_C \cdot \mathrm{e}^{-\left(E_C-E_F\right) / k T} \\
\end{aligned}\]
As temperature \(\uparrow\),
\(E_F\) moves towards the middle of the
forbidden energy gap
Problem-1
In an N-type semiconductor, the Fermi level is 0.3 eV below the
conduction level at a room temperature of \(300^\circ\)K. If the temperature is
increased to \(360^\circ\)K, determine
the new position of the Fermi level?
In a p-type semiconductor, the Fermi level is 0.3 eV above the
valence band at \(300^{\circ}\)K.
Determine the new position of the Fermi level for (a) \(300^{\circ}\)K and (b) \(400^{\circ}\)K ?