Diode Theory

Demonstrative Video


Need for a Diode - Initial Thoughts


DIODE - Basic Ideas

image

image

image

image

Ideal Diode: acts like a perfect conductor (zero resistance) when forward biased and like a perfect insulator (\(\infty\) resistance) when reverse biased.

image
image


Diode Characteristic Curve

image
\[\begin{aligned} & V_{\text{anode}} > V_{\text{cathode}} \leftarrow \text{on} \\ & V_{\text{anode}} < V_{\text{cathode}} \leftarrow \text{off} \\ & V_{\text{anode}} - V_{\text{cathode}} = V_D \end{aligned}\]

Real diode

image

Ideal diode

image

Si Vs Ge

image

image

Diode Current Equation

\[I=I_o\left[\mathrm{e}^{\left(V / \eta V_T\right)}-1\right]\]
\[\begin{aligned} I & = \text{diode current} \\ I_o & = \text{diode reverse saturation current at room temperature}\\ V & = \text{external voltage applied to the diode} \\ \eta &=\text{ a constant, 1 for germanium and 2 for silicon} \\ V_T&=k T / q=T / 11600, \text{volt-equivalent of temperature, i.e., thermal voltage} \\ k & = \text{Boltzmann's constant}~\left(1.38066 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)\\ q & = \text{charge of the electron}~ \left(1.60219 \times 10^{-19} \mathrm{C}\right)\\ T & = \text{temperature of the diode junction}~ (\mathrm{K})=\left({ }^{\circ} \mathrm{C}+273^{\circ}\right) \end{aligned}\]
and current The diode current equation relating the voltage
\[\boxed{I=I_o\left[\mathrm{e}^{\left(V / \eta V_T\right)}-1\right]}\]

Effect of temperature:

image

Load Lines

image
image