The Capacitor-Input Filter

image

Problem: Half-wave rectifier and capacitor-input filter

What is the dc load voltage and ripple?

image

\[\begin{aligned} V_2 & =\frac{120 \mathrm{V}}{5}=24 \mathrm{V} \\ V_p & =\frac{24 \mathrm{V}}{0.707}=34 \mathrm{V} \\ V_{L} & =34 \mathrm{V}\\ I_L & =\frac{V_L}{R_L}=\frac{34 \mathrm{V}}{5 \mathrm{k}\Omega}=6.8 \mathrm{mA}\\ V_R & =\frac{6.8\text{ mA}}{(60\text{ Hz})(100 \mu\text{F})}=1.13\text{ V}_{\text{p-p}}\approx1.1\text{ V}_{\text{p-p}} \end{aligned}\]

Problem: Full-wave rectifier and capacitor-input filter

What is the dc load voltage and ripple?

image

\[\begin{aligned} V_L & =17 \mathrm{~V} \\ I_L & =\frac{17 \mathrm{~V}}{5 \mathrm{k} \Omega}=3.4 \mathrm{~mA}\\ V_R & =\frac{3.4 \mathrm{~mA}}{(120 \mathrm{~Hz})(100 \mu \mathrm{F})}=0.283 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \approx 0.28 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}\]

Problem: Bridge rectifier and capacitor-input filter

What is the dc load voltage and ripple?

image

\[\begin{aligned} V_L & =34 \mathrm{~V} \\ I_L & =\frac{34 \mathrm{~V}}{5 \mathrm{k} \Omega}=6.8 \mathrm{~mA}\\ V_R & =\frac{6.8 \mathrm{~mA}}{(120 \mathrm{~Hz})(100 \mu \mathrm{F})}=0.566 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \approx 0.57 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}\]

Comparison & Conclusion:

\[\begin{aligned} \text{Half-wave:}~ & 34~\mathrm{V} ~ \text{and}~ 1.13 ~\mathrm{V} \\ \text{Full-wave:} ~& 17~\mathrm{V} ~ \text{and}~ 0.288 ~\mathrm{V} \\ \text{Bridge:}~ & 34~\mathrm{V} ~ \text{and}~ 0.566 ~\mathrm{V} \\ \end{aligned}\]