Solved Problems on Single-Phase Induction Motors


Problem-1

A 6-pole, 50-Hz, 1-phase induction motor runs at a speed of 900 rpm. Determine the frequency of currents in the cage rotor?

Solution

\[\begin{aligned} N_s & =\frac{120f}{P}=\frac{120\times50}{6}=1000 ~\mathrm{rpm} \\ \text{Slip,}~s & =\frac{1000-900}{1000}=0.1=10\% \\ \end{aligned}\]

The two rotor current frequencies are :

\[\begin{aligned} sf & =0.1\times50=5 ~\mathrm{Hz}\\ (2-s)f & =1.9\times50=95 ~\mathrm{Hz} \end{aligned}\]


Problem-2

For a single-phase motor of 2 HP rating, supply voltage is 240 V ac. If the efficiency is 70% and power factor is 0.8, find the input current.

Solution

\[\begin{aligned} 1~\mathrm{HP} & = 746~\mathrm{W} \\ P_{\text{out}}& = 2~\mathrm{HP} = 2 \times 746 = 1492~\mathrm{W} \\ \text{Input Power}~ (P) & = \frac{\text{Output power}}{\eta}= \frac{1492}{0.7}\\ &=2131.43 ~\mathrm{W} \\ \Rightarrow~2131.43 & =240\times1\times0.8\\ \Rightarrow~ I & =11.1 ~\mathrm{A} \end{aligned}\]


Problem-3

A 4-pole single-phase induction motor is rotating in a clockwise direction at a speed of 1000 rpm having a voltage of 100 V with a frequency of 50 Hz. At a standstill, if the rotor resistance is 1.7 \(\Omega\), then in the backward branch what will be the effective resistance?


Solution

\[\begin{aligned} N_s & =\frac{120\times50}4 = 1500~\mathrm{rpm}\\ s & =\frac{1500-1000}{1500}=\frac{500}{1500} = 0.33 \\ R_{b} & =\frac{1.7}{2(2-0.33)}\\ &=\frac{1.7}{2\times1.67}\approx0.5~ ~\Omega \end{aligned}\]


Problem-4

A 6 pole, 50 Hz induction motor has an equivalent rotor resistance of 0.01 \(\Omega\)/phase. If its stalling speed is 900 rpm, determine the resistance that must be inserted in rotor windings per phase to obtain maximum torque at starting?


Solution

\[\begin{aligned} \text{Synchronous speed},~ Ns & =120 \times 50/6=1000 ~\mathrm{rpm} \\ \text{Stalling speed} & = 900 ~\mathrm{rpm} \\ \text{Slip at stalling speed}, s & =1000-900/1000=0.1 \\ \end{aligned}\]

\[\begin{aligned} &\text { Slip at maximum torque; }\\ &\begin{aligned} & \mathrm{SmT}=\mathrm{R}_2 / \mathrm{X}_2=0.01 / \mathrm{X}_2 \\ & \because 0.1=0.01 / \mathrm{X}_2 \\ \Rightarrow& \mathrm{X}_2=0.1~ ~\Omega \end{aligned} \end{aligned}\]


Problem-5

A single phase, \(230 \mathrm{~V}, 50 \mathrm{~Hz}\), 4 pole, capacitor start induction motor has the following standstill impedance.

\[\begin{aligned} \text{Main winding}: \mathrm{Zm} & =(8.0+j 5.0)~ ~\Omega \\ \text{auxiliary winding}: \mathrm{Za} & =(9.0+\mathrm{j} 6.0) ~\Omega \end{aligned}\]

Determine the value of the starting capacitor required to produce \(90^{\circ}\) phase difference between the current in the main and auxiliary windings.

Solution

\[\begin{aligned} \text{Main winding}~Z_m&=(8.0+j5.0)\Omega =9.434\angle32^{\circ}~\Omega \\ \text{Auxiliary winding}~Z_a & =(9.0+j6.0)~\Omega=10.82\angle33.69^\circ~\Omega \end{aligned}\]

image


Problem-6


Solution

image

\[\begin{bmatrix}{F}_{m_1}\\{F}_{m_2}\end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -j \\ 1 & j \end{bmatrix} \begin{bmatrix} N_m I_m \\ N_a I_a \end{bmatrix}\]

\[\begin{aligned} {F}_{m_1} & =\frac{1}{2}\left(N_m I_m-j N_a I_a\right) \\ & =\frac{1}{2}(120)\left(\frac{180}{5+j 10}-j \frac{250}{13.89+j 15.50}\right) \\ & =1349.10 \angle-94.5^{\circ} \mathrm{A} \mathrm{rms} \\ {F}_{m_2} & =\frac{1}{2}\left(N_m I_m+j N_a I_a\right) \\ & =\frac{1}{2}(120)\left(\frac{180}{5+j 10}+j \frac{250}{13.89+j 15.50}\right) \\ & =1041.7 \angle-21.6^{\circ} \mathrm{A} \mathrm{rms} \end{aligned}\]