Induction Motor Mastery: Starting, Running, & Max Torquee

Demonstrative Video


Starting Torque

\[\begin{aligned} E_{2} & =\mbox{rotor e.m.f per phase} ~{\color{magenta}{\text{at standstill}}}\\ R_{2} & =\mbox{rotor resistance/phase}\\ X_{2} & =\mbox{rotor reactance/phase} ~{\color{magenta}{\text{at standstill}}}\\ \therefore Z_{2} & =\sqrt{\left(R_{2}^{2}+X_{2}^{2}\right)}=\mbox{rotor impedance/phase } ~{\color{magenta}{\text{at standstill}}}\\ \Rightarrow I_{2} & =\dfrac{E_{2}}{Z_{2}}=\dfrac{E_{2}}{\sqrt{\left(R_{2}^{2}+X_{2}^{2}\right)}}\\ \Rightarrow\cos\phi_{2} & =\dfrac{R_{2}}{Z_{2}}=\dfrac{R_{2}}{\sqrt{\left(R_{2}^{2}+X_{2}^{2}\right)}} \end{aligned}\]

Starting torque of a squirrel-cage motor

Starting torque of a slip-ring motor

Condition for maximum Starting torque

\[\begin{aligned} T_{st} & =\dfrac{K_{2}R_{2}}{R_{2}^{2}+X_{2}^{2}}\\ \therefore\dfrac{dT_{st}}{dR_{2}} & =K_{2}\left[\dfrac{1}{R_{2}^{2}+X_{2}^{2}}-\dfrac{R_{2}\left(2R_{2}\right)}{\left(R_{2}^{2}+X_{2}^{2}\right)^{2}}\right]=0\\ & \Rightarrow R_{2}^{2}+X_{2}^{2}=2R_{2}^{2}\\ \Longrightarrow & R_{2}=X_{2} \end{aligned}\]

Effect of change in supply voltage on Starting torque

\[\begin{aligned} E_{2} & \propto V\\ \therefore T_{st} & =\dfrac{K_{1}E_{2}^{2}R_{2}}{R_{2}^{2}+X_{2}^{2}}=\dfrac{K_{1}V^{2}R_{2}}{R_{2}^{2}+X_{2}^{2}}=\dfrac{K_{3}V^{2}R_{2}}{Z_{2}^{2}}\\ \Longrightarrow T_{st} & \propto V^{2} \end{aligned}\]

Rotor E.M.F and Reactance under Running Conditions

Torque Under Running Conditions

\[\begin{aligned} T_{r} & \propto\phi I_{r}\cos\phi_{2}\\ \Rightarrow T_{r} & \propto E_{2}\dfrac{E_{r}}{Z_{r}}\cdot\dfrac{R_{2}}{Z_{r}}~\left(\because E_{2}\propto\phi\right)\\ \Rightarrow T_{r} & \propto\left(E_{2}\right)\left(\dfrac{sE_{2}}{\sqrt{R_{2}^{2}+\left(sX_{2}\right)^{2}}}\right)\left(\dfrac{R_{2}}{\sqrt{R_{2}^{2}+\left(sX_{2}\right)^{2}}}\right)\\ \Rightarrow T_{r} & \propto\dfrac{sE_{2}^{2}R_{2}}{R_{2}^{2}+\left(sX_{2}\right)^{2}}\\ \Rightarrow T_{r} & =\dfrac{3}{2\pi N_{s}}\left[\dfrac{sE_{2}^{2}R_{2}}{R_{2}^{2}+\left(sX_{2}\right)^{2}}\right] \\ & \Rightarrow \text{Substitute}~ s=1~\text{ to get}~ T_{st} \end{aligned}\]

Condition for maximum torque under running condition

Rotor Torque and Breakdown Torque

\[T=T_{b}\left[\dfrac{2}{\left(s_{b}/s\right)+\left(s/s_{b}\right)}\right]\]
\(s_b\) by the following equation can be expressed in terms of the maximum (or breakdown) torque The rotor torque at any slip