Induction Motor Mastery: Starting, Running, & Max Torquee

Demonstrative Video


Starting Torque

\[\begin{aligned} E_{2} & =\mbox{rotor e.m.f per phase} ~{\color{magenta}{\text{at standstill}}}\\ R_{2} & =\mbox{rotor resistance/phase}\\ X_{2} & =\mbox{rotor reactance/phase} ~{\color{magenta}{\text{at standstill}}}\\ \therefore Z_{2} & =\sqrt{\left(R_{2}^{2}+X_{2}^{2}\right)}=\mbox{rotor impedance/phase } ~{\color{magenta}{\text{at standstill}}}\\ \Rightarrow I_{2} & =\dfrac{E_{2}}{Z_{2}}=\dfrac{E_{2}}{\sqrt{\left(R_{2}^{2}+X_{2}^{2}\right)}}\\ \Rightarrow\cos\phi_{2} & =\dfrac{R_{2}}{Z_{2}}=\dfrac{R_{2}}{\sqrt{\left(R_{2}^{2}+X_{2}^{2}\right)}} \end{aligned}\]

Starting torque of a squirrel-cage motor

Starting torque of a slip-ring motor

Condition for maximum Starting torque

\[\begin{aligned} T_{st} & =\dfrac{K_{2}R_{2}}{R_{2}^{2}+X_{2}^{2}}\\ \therefore\dfrac{dT_{st}}{dR_{2}} & =K_{2}\left[\dfrac{1}{R_{2}^{2}+X_{2}^{2}}-\dfrac{R_{2}\left(2R_{2}\right)}{\left(R_{2}^{2}+X_{2}^{2}\right)^{2}}\right]=0\\ & \Rightarrow R_{2}^{2}+X_{2}^{2}=2R_{2}^{2}\\ \Longrightarrow & R_{2}=X_{2} \end{aligned}\]

Effect of change in supply voltage on Starting torque

\[\begin{aligned} E_{2} & \propto V\\ \therefore T_{st} & =\dfrac{K_{1}E_{2}^{2}R_{2}}{R_{2}^{2}+X_{2}^{2}}=\dfrac{K_{1}V^{2}R_{2}}{R_{2}^{2}+X_{2}^{2}}=\dfrac{K_{3}V^{2}R_{2}}{Z_{2}^{2}}\\ \Longrightarrow T_{st} & \propto V^{2} \end{aligned}\]

Rotor E.M.F and Reactance under Running Conditions

Torque Under Running Conditions

\[\begin{aligned} T_{r} & \propto\phi I_{r}\cos\phi_{2}\\ \Rightarrow T_{r} & \propto E_{2}\dfrac{E_{r}}{Z_{r}}\cdot\dfrac{R_{2}}{Z_{r}}~\left(\because E_{2}\propto\phi\right)\\ \Rightarrow T_{r} & \propto\left(E_{2}\right)\left(\dfrac{sE_{2}}{\sqrt{R_{2}^{2}+\left(sX_{2}\right)^{2}}}\right)\left(\dfrac{R_{2}}{\sqrt{R_{2}^{2}+\left(sX_{2}\right)^{2}}}\right)\\ \Rightarrow T_{r} & \propto\dfrac{sE_{2}^{2}R_{2}}{R_{2}^{2}+\left(sX_{2}\right)^{2}}\\ \Rightarrow T_{r} & =\dfrac{3}{2\pi N_{s}}\left[\dfrac{sE_{2}^{2}R_{2}}{R_{2}^{2}+\left(sX_{2}\right)^{2}}\right] \\ & \Rightarrow \text{Substitute}~ s=1~\text{ to get}~ T_{st} \end{aligned}\]

Condition for maximum torque under running condition

Rotor Torque and Breakdown Torque

The rotor torque at any slip \(s\) can be expressed in terms of the maximum (or breakdown) torque \(T_b\) by the following equation \[T=T_{b}\left[\dfrac{2}{\left(s_{b}/s\right)+\left(s/s_{b}\right)}\right]\] where \(s_b\) is the breakdown or pull-out slip