NO LOAD & BLOCKED ROTOR TEST OF INDUCTION MOTORS:

Demonstrative Video



OBJECTIVE:

To draw the equivalent circuit of a 3 phase induction motor and to obtain its performance characteristics by conducting No-load and blocked rotor tests.

NAME PLATE DETAILS:

NAME PLATE DETAILS OF 3ɸ SQUIRREL CAGE INDUCTION MOTOR

 KW Rating

5 HP/ 3.5 KW, 0.86pf

Voltage

415 V AC, 50 Hz

Current

7 A

Speed

1440 RPM

Winding type

Squirrel Cage

 starter Resistance

5.8  Ω (R-N)

Brake Drum Radius: 0.1 M

 

APPARATUS REQUIRED:

S.No.

Name of the Equipment

Range

 Quantity

Type

1.

Voltmeter

500 VAC

1 No

Digital

2.

Ammeter

20 A

1 No

Digital

3.

Wattmeter

150/300 V 20 A  

1 No

 Digital

4.

Three phase variac

0 - 415V

20 A

1 No

 Core

5.

Tachometer

2000 Rpm

1 No

Digital

 

INTRODUCTION:

NO LOAD TEST::

BLOCKED ROTOR TEST:

CIRCUIT DIAGRAM FOR NO LOAD TEST:

image

EM LAB SET-UP:

image

CONNECTION FOR NO-LOAD TEST:

PROCEDURE FOR NO-LOAD TEST:

  1. Connect the circuit diagram.
  2. Ensure that the motor is unloaded and switch on MCB, start the motor with the help of Direct On Line (D.O.L) starter.
  3. Motor starts to run at rated speed note down the No-load Voltage (Vo), Current (Io), Power (Wo) from the multi-function meter.
  4. Push OFF button (Red button) in the D.O.L starter, switch off the MCB.
  5. Measure R1 the stator resistance per phase using multimeter.

OBSERVATION TABLE:

S.No.

V0(V)

I0(A)

W0(three phase)

 

 

 

 

 

MODEL CALCULATION:

NO LOAD TEST:-

$$ \begin{aligned} & \mathrm{W}_0=\sqrt{3} \mathrm{~V}_0 \mathrm{I}_0 \cos \phi_0\\ & \mathrm{W}_0= ~\text{No load input power} \\ & \mathrm{V}_0= ~\text{Line voltage} \\ & \mathrm{I}_0= ~\text{Line current at no load} \\ & \text{No load power factor}~(\cos\phi_0)=\frac{\mathrm{W}_0}{\sqrt{3} \mathrm{V}_0 \mathrm{I}_0} \\ & \text{Active component current}~ (\mathrm{I}_{\mathrm{c}})=I_0 \cos \phi_0 \\ & \text{Magnetizing component current}~ (\mathrm{I}_{\mathrm{m}})=\mathrm{I}_{0} \cdot \sin \phi_0 \\ & \text{No load resistance}~ R_0=\frac{\mathrm{V}_0 \left(\text{per phase}\right)}{I_{\mathrm{c}} \left(\text{per phase}\right)} \\ & \text{No load reactance}~ X_0=\frac{\mathrm{V}_0 \left(\text{per phase}\right)}{\mathrm{I_m} \left(\text{per phase}\right)} \\ & \text{Magnetizing reactance}~ X_{\mathrm{m}} = X_0 - X_1 \\ & \text{(where } X_1 \text{ is to be obtained from blocked rotor test)} \end{aligned} $$

CIRCUIT DIAGRAM FOR BLOCKED ROTOR TEST::

image

CONNECTION FOR BLOCKED ROTOR TEST:

image

PROCEDURE FOR BLOCKED ROTOR TEST:

  1. Connect the circuit diagram.
  2. Block the rotor by tightening the belt.
  3. Switch ON the MCB and apply the voltage gradually by increasing the output of the 3ɸ VARIAC so that the current drawn by the motor under blocked rotor condition is equal to the full load current of the motor.
  4. Record the reading of Blocked rotor Voltage (\(V_{BRL}\)), Current (\(I_{BRL}\)), Power (\(W_{BRL}\)) from the multi-function meter.
  5. Unload the motor by loosening the belts, reduce the applied voltage to zero by varying the three-phase VARIAC and switch OFF the MCB.

OBSERVATION TABLE:

S.No.

VBRL(V)

IBRL(A)

WBR (three phase)

 

 

 

 

 

MODEL CALCULATIONS:

BLOCKED ROTOR TEST:

$$ \begin{aligned} & \mathrm{W}_{\mathrm{BR}} = \mathrm{W}_{\mathrm{BRL}} = \sqrt{3} \, \mathrm{V}_{\mathrm{BR}} \, \mathrm{I}_{\mathrm{BR}} \cos \varphi_{\mathrm{BR}} \\ & \text{Power factor} \left( \cos \varphi_{\mathrm{BR}} \right) = \frac{\mathrm{W}_{\mathrm{BRL}}}{\sqrt{3} \, \mathrm{V}_{\mathrm{BR}} \, \mathrm{I}_{\mathrm{BR}}} \\ & \text{Where} \, \mathrm{W}_{\mathrm{BRL}} = \text{three phase input power in blocked rotor test} \\ & \mathrm{V}_{\mathrm{BRL}} = \text{Line voltage} \\ & \mathrm{I}_{\mathrm{BRL}} = \text{Line current} \end{aligned} $$

For delta connected stator:

$$ \begin{aligned} & \text{Input voltage (per phase)} \, \mathrm{V}_{\mathrm{BR}} = \mathrm{V}_{\mathrm{BRL}} \\ & \text{Input current (per phase)} \, \mathrm{I}_{\mathrm{BR}} = \frac{\mathrm{I}_{\mathrm{BRL}}}{\sqrt{3}} \\ & \text{Input power (per phase)} \, \mathrm{P}_{\mathrm{BR}} = \frac{\mathrm{W}_{\mathrm{BRL}}}{3} \end{aligned} $$

For star connected stator:

$$ \begin{aligned} & \text{Input voltage (per phase)} \, \mathrm{V}_{\mathrm{BR}} = \frac{\mathrm{V}_{\mathrm{BRL}}}{\sqrt{3}} \\ & \text{Input current (per phase)} \, \mathrm{I}_{\mathrm{BR}} = \mathrm{I}_{\mathrm{BRL}} \\ & \text{Input power (per phase)} \, \mathrm{P}_{\mathrm{BR}} = \frac{\mathrm{W}_{\mathrm{BRL}}}{3} \end{aligned} $$

In the above circuit the stator is connected in delta

To estimate the performance at any rotor speed N rpm

Rated line voltage applied to the stator = \( V \); Let the phase voltage be \( V_{\text{ph}} \)

OBSERVATION TABLE:

Speed N 

Ns

0.99Ns

0.98

Ns

0.97Ns

0.96Ns

0.95Ns

0.9 Ns

0.7

Ns

0.5

Ns

0.3

Ns

0.1

Ns 

0

Slip ‘s’

0

0.01

0.02

0.03

0.04

0.05

0.1

0.3

0.5

0.7

0.9

1

Z2’=

(R2’/s)

+ jX2

 

 

 

 

 

 

 

 

 

 

 

 

I2

 

 

 

 

 

 

 

 

 

 

 

 

Pg

 

 

 

 

 

 

 

 

 

 

 

 

Pcu

 

 

 

 

 

 

 

 

 

 

 

 

Pout

 

 

 

 

 

 

 

 

 

 

 

 

I1

 

 

 

 

 

 

 

 

 

 

 

 

Pin

 

 

 

 

 

 

 

 

 

 

 

 

Efficiency η

 

 

 

 

 

 

 

 

 

 

 

 

PF Cosϕ1

 

 

 

 

 

 

 

 

 

 

 

 

Torque T

 

 

 

 

 

 

 

 

 

 

 

 

 

Equivalent circuit of the induction motor under test:

image

GRAPHS::

Draw the graphs between

RESULT::

LOAD TEST OF INDUCTION MOTOR:

OBJECTIVE FOR LOAD TEST

To obtain the performance characteristics of 3 – phase induction motor by Load test and by loss summation method

CIRCUIT DIAGRAM FOR LOAD TEST

image

INTRODUCTION:

THEORY:

CONNECTION:

image

PROCEDURE:

  1. Connect the circuit as per the circuit diagram.
  2. Switch ON the MCB and start the induction motor with the help of the D.O.L starter.
  3. Induction motor starts to rotate at rated speed.
  4. Note down the readings of wattmeter, ammeter, and voltmeter on no-load.
  5. The induction motor current is increased by tightening the brake drum till the rated current is attained. At each current, Voltage (V), Current (IL), Power input (Pin), Speed (N), S1 & S2 (spring balance readings) are noted.
  6. Reduce the load on the motor and finally unload it completely, then press the starter ‘stop’ button and turn off the MCB.
  7. Note down the effective diameter of the brake drum in meters (R).

OBSERVATION TABLE:

Constant losses

\( P_{\text{const}} = \text{No load input power} – \text{corresponding input power during no-load test} \)

M. F. = Multiplication factor of Wattmeter = \( \left(\frac{VI \cos \varphi}{\text{FSD}}\right) \)

FSD = Full scale divisions

S.NO.

V

IL

PIN

N

Spring Balance

T

PO

Slip

PF

η

S1

S2

S1-S2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODEL CALCULATIONS:

$$ \begin{aligned} \text{Input power drawn by the motor} (\text{Pin})&=\text{W} \\ \text{Torque} (\text{T})&=9.81(\text{S}_1-\text{S}_2) \text{R} \text{N-m} \\ \text{Output power in watts} (\text{P}_0)&=2 \pi \text{N} \text{T}_{\text{sh}} / 60 \text{Watts} \\ \text{Efficiency} \eta&=\text{P}_0 / \text{P}_{\text{in}} \\ \text{Slip}&=\left(\text{N}_{\text{s}}-\text{N}\right) / \text{N}_{\text{s}}\left[\right. \text{where} \left.\text{N}_{\text{s}}=(120 \text{f}) / \text{p}\right]; \text{p being number of poles} \\ \text{Power factor of the induction motor} (\text{PF}) &= \operatorname{Cos} \phi_1=\text{P}_{\text{in}} / \sqrt{3} \text{VI}_{\text{L}} \end{aligned} $$

MODEL GRAPH:

image

Draw the graphs between

  1. % efficiency (\(\eta\)) Vs Output
  2. Torque Vs Output
  3. Power factor Vs Output
  4. % Slip Vs Output
  5. Torque Vs Slip ( on a separate sheet )

Result:

LOAD

EFFICIENCY

PF

SLIP

LINE CURRENT

1/4

 

 

 

 

1/2

 

 

 

 

3/4

 

 

 

 

FULL LOAD

 

 

 

 

 

QUESTIONS:

  1. What are the methods of starting induction motor?
  2. What are the types of induction motor?
  3. Why is a cage motor preferred as compared to the slip ring motor?
  4. What are the differences in characteristics obtained from load test and performance prediction using equivalent circuit?