Demonstrative Video


Theoretical Explanations


Experiment


OBJECTIVE:

To conduct Hopkinson’s test on the given pair of two identical machines and obtain performance characteristics for both motoring and generating operations.

Name plate details of DC shunt motor and generator:

 

H.P./

kW rating

Voltage

Current

Speed (RPM)

Field Current

Winding type

 

 

Motor

3.5 KW

200 V

18.6 A

1500

0.95 A

Shunt

$R_a = 0.8~\Omega$

$R_{sh} = 172~\Omega$ 

Generator

3.5

KW

200 V

16 A

1500

0.9 A

Shunt

$R_a = 1.5~\Omega $

$R_{sh} =181~\Omega $ 


APPARATUS REQUIRED

S.No.

Name of the Equipment

Range

 Quantity

Type

1.

Voltmeter

300 V

2 Nos

Digital

2.

Ammeter

20 A

2 Nos

Digital

3.

Rheostat

360Ω/1.6A

2 Nos

 Coil

4.

SPST (Switch)

 

1 No

 

5.

Tachometer

2000 Rpm

1 No

Digital


CIRCUIT DIAGRAM :

image

INTRODUCTION :

THEORY:

(a) Resistance losses in the armature and field circuits,

(b) Hysteresis losses in armature iron,

(c) Eddy current losses in the armature iron and pole faces and

(d) Mechanical losses due to friction and windage. 


LAB SETUP :

image

CIRCUIT CONNECTIONS :

image

PROCEDURE :

  1. Connect the circuit.
  2. The field rheostat of the motor should be kept at minimum position and field rheostat of the Generator should be kept at maximum position.
  3. Switch ON the MCB, start the Motor-Generator set by slowly pulling the handle of 3-point starter.
  4. The motor–generator set is brought to rated speed i.e. 1500 rpm by adjusting the field rheostat of the motor.
  5. Vary the excitation of the generator by varying its field rheostat until the voltmeter across the switch reads zero; then close the switch.
  6. If the voltmeter reading had been large before closing the switch, that indicates unsatisfactory condition for parallel operation. In such case reverse the generator field terminals to arrive at satisfactory condition and repeat step 5.
  7. Now, adjust the generator and or motor field rheostat for obtaining different values of currents and note down the meter readings until the generator is fully loaded. i.e: Now increase Igf and decrease Imf in steps so as to vary the motor armature current to a maximum of 20% overload.
  8. During all this time the motor’s speed should be maintained at its rated value and any change due to the above variations should be dully nullified by adjusting the external field resistance. Take about 8 to 10 readings for the motor armature currents between its minimum and maximum permissible values and record the same in the observation table. 
  9. While switching off the system, it is a healthy practice to go in the reverse order so that when you start the system there is no chance of the armature resistance being at its minimum i.e. exactly reverse the previous steps. 
  10. Measure the resistance of DC motor by V-I method.

OBSERVATION TABLE :

S.NO

1

2

3

4

5

6

7

8

9

10

V

 

 

 

 

 

 

 

 

 

 

I1

 

 

 

 

 

 

 

 

 

 

I2

 

 

 

 

 

 

 

 

 

 

I3

 

 

 

 

 

 

 

 

 

 

I4

 

 

 

 

 

 

 

 

 

 


Expressions for Losses & Efficiencies :


Calculation of Stray Losses ($P_s$) :

V = ---------------------

S.No.

1

2

3

4

5

6

7

8

9

10

$$ \begin{aligned} P_{\mathrm{in(arm)}} &= V\cdot I_a \\ & = V \cdot (I_{am}-I_{ag}) \end{aligned} $$

 

 

 

 

 

 

 

 

 

 

 

$$ \begin{aligned} P_a & = I_{am}^2 \cdot R_{am} + I_{ag}^2 \cdot R_{ag} \end{aligned} $$

 

 

 

 

 

 

 

 

 

 

 

$$ \begin{aligned} & P_{\mathrm{in(arm)}} - P_a \end{aligned} $$

 

 

 

 

 

 

 

 

 

 

$$ \begin{aligned} P_s & = 0.5 \cdot \left(P_{\mathrm{in(arm)}} - P_a\right) \end{aligned} $$

 

 

 

 

 

 

 

 

 

 


Calculation of Efficiency :

S.No.

1

2

3

4

5

6

7

8

9

10

Input to motor $$ \begin{aligned} P_{\mathrm{in(motor)}} & = V \cdot (I_{am}+I_{fm}) \end{aligned} $$

 

                   

Armature copper losses $$ \begin{aligned} & = I_{am}^2 \cdot R_{am} \end{aligned} $$  

                   

Field copper loss $$ \begin{aligned} & = V \cdot I_{fm} \end{aligned} $$

 

                   

Total power loss$$ \begin{aligned} P_{Lm} & = P_s + V \cdot I_{fm} + I_{am}^2 \cdot R_{am} \end{aligned} $$

                   

Motor output $$ \begin{aligned} P_{\text{out}} & = P_{\text{in}} - P_{Lm} \end{aligned} $$

                   

Efficiency of the Motor $$ \begin{aligned} & P_{\text{out}}/ P_{\text{in}} \end{aligned} $$

                   

Output of the Generator $$ \begin{aligned} P_{\text{out}} & = V \cdot (I_{ag}-I_{fg}) \end{aligned} $$

 

                   

Generator field copper loss $$ \begin{aligned} & = V \cdot I_{fg} \end{aligned} $$

 

                   

Total power loss $$ \begin{aligned} P_{Lg} & = P_s + V \cdot I_{fg} + I_{ag}^2 \cdot R_{ag} \end{aligned} $$

 

                   

Input to the generator $$ \begin{aligned} & P_{\text{out (gen)}} - P_{Lg} \end{aligned} $$

 

                   

Efficiency of the generator $$ \begin{aligned} & P_{\text{out}} / P_{\text{in}} \end{aligned} $$

                   

Model Graphs :

image

GRAPHS TO BE PLOTTED

  1. Plot the graph Efficiency of motor vs Line current (I am+ Ifm)
  2. Plot the graph Efficiency of motor Vs Motor output (Pout m)
  3.  Plot Efficiency of generator Vs Load current of generator (Iag)
  4. Plot Efficiency of generator Vs Generator output (Pout, g)

Note: Graphs 1 & 3 should be plotted in one graph sheet and graphs 2 & 4 should be plotted in one graph sheet


Results :

From the graphs infer the values:

                Load

$\eta_m$ $\eta_g$
1/4

 

 

1/2

 

 

3/4

 

 

 FULL

 

 


Questions? :

1.What is the difference between Swinburne’s and Hopkinson’s tests?

2.What are the advantages and disadvantages of Hopkinson’s test?

3.Can Hopkinson’s test be performed on any two DC machines? If so what should be the specifications of those machines?