\(P\) | Number of poles |
\(f\) | Supply frequency (Hz) |
\(N_s\) | Synchronous speed (rpm) |
\(N_r\) | Rotor speed (rpm) |
\(s\) | Slip |
\(T_e\) | Electromagnetic torque (Nm) |
\(P_{in}\) | Input power (W) |
\(P_{out}\) | Output power (W) |
\(P_{mech}\) | Mechanical power developed (W) |
\(P_{rot}\) | Rotor copper losses (W) |
\(P_{core}\) | Core losses (W) |
\(P_{stator}\) | Stator copper losses (W) |
\(I_s\) | Stator current (A) |
\(I_r\) | Rotor current referred to the stator (A) |
\(V_s\) | Stator voltage (V) |
\(R_s\) | Stator resistance (\(\Omega\)) |
\(R_r'\) | Rotor resistance referred to the stator (\(\Omega\)) |
\(X_s\) | Stator reactance (\(\Omega\)) |
\(X_r'\) | Rotor reactance referred to the stator (\(\Omega\)) |
\(X_m\) | Magnetizing reactance (\(\Omega\)) |
\(Z_{eq}\) | Equivalent impedance (\(\Omega\)) |
\(E_r\) | Rotor induced EMF (V) |
\(\eta\) | Efficiency |
\(PF\) | Power factor |
\(k_w\) | Winding factor |
\(R_{th}, X_{th}\) | Thevenin equivalent parameters (\(\Omega\)) |
\(T_{max}\) | Maximum torque (Nm) |
\(T_{start}\) | Starting torque (Nm) |
\(T_{full-load}\) | Full-load torque (Nm) |
\(I_{start}\) | Starting current (A) |
\(Z_{block}\) | Impedance during blocked rotor test (\(\Omega\)) |
\(s_{max}\) | Slip at maximum torque |
\(s_{fl}\) | Full-load slip |
\(P_{nl}\) | Power during no-load test (W) |
\(P_{sc}\) | Power during blocked rotor test (W) |
\(I_{nl}\) | No-load current (A) |
\(I_{sc}\) | Short-circuit current (A) |
\(R_{nl}, X_{nl}\) | No-load equivalent parameters (\(\Omega\)) |
\[N_s = \frac{120f}{P}\]
\[s = \frac{N_s - N_r}{N_s}\]
\[f_r = sf\]
\[E_r = sE_s\]
\[Z_{eq} = R_s + jX_s + \frac{\left(\frac{R_r'}{s} + jX_r'\right)X_m}{\frac{R_r'}{s} + j\left(X_r' + X_m\right)}\]
\[P_{stator} = I_s^2 R_s\]
\[P_{rot} = sP_{mech}\]
\[P_{core} = P_{in} - (P_{stator} + P_{rot} + P_{mech})\]
\[P_{mech} = \frac{1-s}{s} P_{rot}\]
\[T_e = \frac{P_{mech}}{\omega_s}, \quad \omega_s = \frac{2\pi N_s}{60}\]
\[P_{out} = P_{mech} - P_{friction} - P_{windage}\]
\[P_{in} = \sqrt{3}V_sI_s\cos\phi\]
\[\eta = \frac{P_{out}}{P_{in}} \times 100\%\]
\[PF = \cos\phi = \frac{P_{in}}{\sqrt{3}V_sI_s}\]
\[T_e \propto \frac{s}{R_r' + \left(\frac{R_r'}{s}\right)^2}\]
\[s_{max} = \frac{R_r'}{\sqrt{R_s^2 + (X_s + X_r')^2}}\]
\[T_{max} = \frac{E_s^2}{2\omega_s(R_r' + \sqrt{R_s^2 + (X_s + X_r')^2})}\]
\[T_{start} = \frac{3}{\omega_s}\frac{V_s^2 R_r'}{(R_s + R_r')^2 + (X_s + X_r')^2}\]
\[T_{full-load} = T_e \text{ at } s = s_{fl}\]
\[Z_{block} = \sqrt{R_s^2 + (X_s + X_r')^2}\]
\[P_{nl} = 3 V_s I_{nl} \cos\phi_{nl}\] \[R_{nl} = \frac{P_{nl}}{I_{nl}^2}, \quad X_{nl} = \sqrt{\frac{V_s^2}{I_{nl}^2} - R_{nl}^2}\] \[P_{core} \approx P_{nl} - 3I_{nl}^2R_s\]
\[P_{sc} = 3 V_s I_{sc} \cos\phi_{sc}\] \[R_{block} = \frac{P_{sc}}{I_{sc}^2}, \quad X_{block} = \sqrt{\frac{V_s^2}{I_{sc}^2} - R_{block}^2}\]
\[R_{th} = \frac{R_s}{1 + \left(\frac{X_s}{X_m}\right)^2}, \quad X_{th} = \frac{X_m X_s}{X_m + X_s}\]
\[I_{sc} = \frac{V_s}{Z_{block}}\]