Symmetrical Components in Power Systems

Demonstrative Video


Revision of Important Formulas

\[\left[\begin{array}{c} V_{a 0} \\ V_{a 1} \\ V_{a 2} \end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a \end{array}\right]\left[\begin{array}{l} V_{a} \\ V_{b} \\ V_{c} \end{array}\right]\]

\[\boxed{a=e^{j 120^{0}}=-\frac{1}{2}+j \frac{\sqrt{3}}{2}}\]

\[\left[\begin{array}{c} \mathrm{V}_{\mathrm{a}} \\ \mathrm{V}_{\mathrm{b}} \\ \mathrm{V}_{\mathrm{c}} \end{array}\right]=\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & \mathrm{a}^{2} & \mathrm{a} \\ 1 & \mathrm{a} & \mathrm{a}^{2} \end{array}\right]\left[\begin{array}{l} \mathrm{V}_{\mathrm{a} 0} \\ \mathrm{~V}_{\mathrm{a} 1} \\ \mathrm{~V}_{\mathrm{a} 2} \end{array}\right]\]

Problem-1

The voltages across a 3-phase unbalanced load are \[V_a = 300 \angle 20^{\circ}~V, ~V_b = 360\angle 90^{\circ}~V, ~\text{and}~V_c = 500 \angle -140^{\circ}~V\]

Phase sequence is abc

Solution-1

\(\therefore\) The negative sequence components are \[\begin{array}{l} \mathrm{V}_{a2}=364.05 \angle-13^{\circ} \mathrm{V} \\ \mathrm{V}_{\mathrm{b} 2}=\mathrm{aV}_{\mathrm{a} 2}=1 \angle 120^{\circ} \times 364.05 \angle-13^{\circ}=364.05 \angle 107^{\circ} \mathrm{V} \\ \mathrm{V}_{\mathrm{c} 2}=\mathrm{a}^{2} \mathrm{~V}_{\mathrm{a} 2}=1 \angle 240^{\circ} \times 364.05 \angle-13^{\circ}=364.05 \angle 227^{\circ} \mathrm{V} \end{array}\]

Problem-2

The symmetrical components of phase-a voltage in a 3-phase unbalanced system are \[\mathrm{V}_{\mathrm{a} 0}=10 \angle 180^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{al}}=50 \angle 0^{\circ} \mathrm{V} \text { and } \mathrm{V}_{\mathrm{a} 2}=20 \angle 90^{\circ} \mathrm{V}\]

Solution-2