Solved Problems on Reactance Diagrams

Demonstrative Video


Problem-1

Consider the following 50-Hz PS SLD. The system ratings are:

image Draw the reactance diagram of the system chosing a base rating of 30 MVA and 33 kV

Solution-1

Transmission Line: \(\dfrac{20.5\times30}{33^{2}}=0.564\)
Transformer-1: \(\dfrac{15.2\times30}{33^{2}}=0.418\)
Transformer-2: \(\dfrac{16\times30}{33^{2}}=0.44\)
Generator-1: \(\dfrac{1.6\times30}{11^{2}}=0.396\)
Generator-2: \(\dfrac{1.2\times30}{6.2^{2}}=0.936\)
Generator-3: \(\dfrac{0.56\times30}{6.2^{2}}=0.437\)

Reactance diagram of the given system:

image

Problem-2

Draw the reactance diagram choosing a base of 50 MVA, 138 kV in the 40 \(\Omega\) line

image

Generator-G1: 20 MVA 18 kV \(X''=20\%\)
Generator-G2: 20 MVA 18 kV \(X''=20\%\)
Syn. Motor: 30 MVA 13.8 kV \(X''=20\%\)
\(3\phi\) Y-T TF 20 MVA 138/20 kV \(X''=10\%\)
\(3\phi\) Y-\(\Delta\) TF 15 MVA 138/13.8 kV \(X''=10\%\)

Solution-2

Reactance of \(j40~\Omega\) TL

Reactance of Transformer T1

\[\begin{aligned} \left.\begin{array}{l} \mathrm{kV_B} \text { on } \mathrm{T}_{1} \\ \mathrm{LT} \text { side } \end{array}\right\}&=\text { Base } \mathrm{kV} \text { on } \mathrm{HT} \text { side } \times \frac{\text { LT voltage rating }}{\mathrm{HT} \text { voltage rating }}\\ &=138 \times \frac{20}{138}=20 \mathrm{kV}\\ k V_{b, new}&=20 k V\\ \left.\begin{array}{l} \text { New p.u. } \\ \text{reactance of} \mathrm{T}_{1} \end{array}\right\}&=\mathrm{X}_{\mathrm{pu}, \text { old }} \times\left(\frac{\mathrm{kV}_{\mathrm{b}, \mathrm{old}}}{\mathrm{kV}_{\mathrm{b}, \mathrm{new}}}\right)^{2} \times\left(\frac{\mathrm{MVA}_{b, \mathrm{ncw}}}{\mathrm{MVA}_{\mathrm{b}, \text { old }}}\right)\\ &=0.1 \times\left(\frac{20}{20}\right)^{2} \times\left(\frac{50}{20}\right)\\ &=0.25 \mathrm{p.u} \end{aligned}\]

image