Underground System of Power Transmission
Demonstrative Video
VIDEO
Two-wire d.c. system.
\[\begin{array}{l}
\text { Load current, } I_{1}=P / V_{m} \\
\text { Line losses, } W=2 \mathrm{I}_{1}^{2}
R_{1}=2\left(\frac{P}{V_{m}}\right)^{2} \frac{\rho l}{a_{1}} \\
W=\frac{2 P^{2} \rho l}{a_{1} V_{m}^{2}}
\end{array}\]
\(\therefore \quad\) Area of \(\mathrm{X}-\) section, \(a_{1}=\frac{2 P^{2} \rho l}{W
V_{m}^{2}}\)
\[=2
a_{1} l=2\left(\frac{2 P^{2} \rho l}{W V_{m}^{2}}\right) l=\frac{4 P^{2}
\rho l^{2}}{W V_{m}^{2}}=K(s a y)\]
Volume of conductor material required
Two-wire d.c. system with mid point earthed
\[\begin{aligned}
\text { Load current, } I_{2} &=P / V_{m} \\
\text { Line losses, } W &=2 I_{2}^{2}
R_{2}=2\left(\frac{P}{V_{m}}\right)^{2} \rho \frac{l}{a_{2}} \\
W &=\frac{2 P^{2} \rho l}{V_{m}^{2} a_{2}}
\end{aligned}\]
Area of \(\mathrm{X}\) -section,
\(a_{2}=\frac{2 P^{2} \rho l}{W
V_{m}^{2}}\)
\[=2
a_{2} l=2\left(\frac{2 P^{2} \rho l}{W V_{m}^{2}}\right) l=\frac{4 P^{2}
\rho l^{2}}{W V_{m}^{2}}=K\]
Volume of conductor material required
Three wire d.c. system
\[\begin{array}{l}
\text { Load current, } I_{3}=P / V_{m} \\
\text { Line losses, } W=2 I_{3}^{2}
R_{3}=2\left(\frac{P}{V_{m}}\right)^{2} \rho \frac{l}{a_{3}}
\end{array}\]
\[W=\frac{2 P^{2} \rho l}{V_{m}^{2}
a_{3}}\]
Area of \(X\) -section, \(a_{3}=\frac{2 P^{2} \rho l}{W
V_{m}^{2}}\)
Assuming the area of \(X\) -section
of neutral wire to be half of that of either outers,
\[\begin{array}{l}
=2 \cdot 5 a_{3} l=2 \cdot 5\left(\frac{2 P^{2} \rho l}{W
V_{m}^{2}}\right) l=\frac{5 P^{2} \rho l^{2}}{W V_{m}^{2}} \\
=1 \cdot 25 K
\end{array}\]
Volume of conductor material required
\(1\phi\) , 2-wire a.c. system
R.M.S value of the voltage = \(V_m /
\sqrt{2}\) . Assume the p.f. of the load \(=\cos\phi\)
\(\text { Load current, } I_{4}
=\frac{P}{V_{m} / \sqrt{2} \cos \phi}=\frac{\sqrt{2} P}{V_{m} \cos
\phi}\)
\[\begin{aligned}
&=2\left(\frac{\sqrt{2} P}{V_{m} \cos \phi}\right)^{2}
\rho \frac{l}{a_{4}}=\frac{4 P^{2} \rho l}{a_{4} V_{m}^{2} \cos ^{2}
\phi}
\end{aligned}\]
\(\text { Line losses, } W =2 I_{4}^{2}
R_{4}\)
Area of \(X\) -section, \(a_{4}=\frac{4 P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}\)
\[\begin{array}{l}
=2\left(\frac{4 P^{2} \rho l}{W V_{m}^{2} \cos ^{2} \phi}\right)
l=\frac{8 P^{2} \rho l^{2}}{W V_{m}^{2} \cos ^{2} \phi} \\
=\frac{2}{\cos ^{2} \phi} \times \frac{4 P^{2} \rho l^{2}}{W
V_{m}^{2}} =\frac{2 K}{\cos ^{2} \phi}
\end{array}\]
Volume of conductor material required
\(1\phi\) , 2-wire system with
mid-point earthed
R.M.S voltage \(=V_m/\sqrt{2}\)
\(\text { Load current, } I_{5}
=\frac{\sqrt{2} P}{V_{m} \cos \phi}\)
\(\begin{aligned}
\text { Line losses, } W &=2 I_{5}^{2} R_{5}=2\left(\frac{\sqrt{2}
P}{V_{m} \cos \phi}\right)^{2} \rho \frac{l}{a_{5}} =\frac{4 P^{2} \rho
l}{a_{5} V_{m}^{2} \cos ^{2} \phi}
\end{aligned}\)
Area of \(X\) -section, \(a_{5}=\frac{4 P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}\)
\[\begin{array}{l}
=2 a_{5} l=2\left(\frac{4 P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}\right) l=\frac{8 P^{2} \rho l^{2}}{W V_{m}^{2} \cos ^{2} \phi} \\
=\frac{2}{\cos ^{2} \phi} \times \frac{4 P^{2} \rho l^{2}}{W V_{m}^{2}}
\\
=\frac{2 K}{\cos ^{2} \phi}
\end{array}\]
Volume of conductor material required
\(1\phi\) , 3-wire system
For balanced load system reduces to \(1\phi\) 2-wire except there is additional
neutral wire
\[\begin{array}{l}
=2 \cdot 5 * a_{4} l \\
=2 \cdot 5\left(\frac{4 P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}\right) \\
=\frac{10 P^{2} \rho l^{2}}{W V_{m}^{2} \cos ^{2} \phi} \\
=\frac{2 \cdot 5}{\cos ^{2} \phi} \times \frac{4 P^{2} \rho
l^{2}}{W V_{m}^{2}} \\
=\frac{2 \cdot 5 K}{\cos ^{2} \phi}
\end{array}\]
\(2\phi\) , 4-wire system
system can be considered as two independent \(1\phi\) systems, each transmitting \(1/2^ *\text{total power}\)
Outer voltage (AB or CD) is twice that of \(1\phi\) 2 wire
Hence, current \(I_7\) in each
conductor will be half that of \(1\phi\) 2 wire
Consequently, area of \(X-\) section of each conductor is also half
but as there are 4-wires, so volume of conductor material is same as in
that of \(1\phi\) 2 wire
\[=\frac{2 K}{\cos ^{2}
\phi}\]
\(2\phi\) , 3-wire system
Maxm. voltage between either outer and neutral wire \(=V_m/\sqrt{2}\)
\[=\frac{V_{m} /
\sqrt{2}}{\sqrt{2}}=\frac{V_{m}}{2}\]
Current in each
outer, \(I_{8}=\frac{P / 2}{V_{m} / 2 \cos
\phi}=\frac{P}{V_{m} \cos \phi}\)
\[=\sqrt{I_{8}^{2}+I_{8}^{2}}=\sqrt{2}
I_{8}\]
Current in neutral wire
Assuming the current density to be constant, the area of \(\mathrm{X}\) -section of neutral wire will
be \(\sqrt{2}\) times that of either of
the outers.
\(\therefore \quad \text { Resistance of
neutral wire } =\frac{R_{8}}{\sqrt{2}}=\frac{\rho}{\sqrt{2}}
a_{8}\)
\[\begin{array}{l}
\begin{aligned}
\text { Line losses, } W &=2 I_{8}^{2} R_{8}+\left(\sqrt{2}
I_{8}\right)^{2} \frac{R_{8}}{\sqrt{2}}=I_{8}^{2} R_{8}(2+\sqrt{2}) \\
&=\left(\frac{P}{V_{m} \cos \phi}\right)^{2} \times \rho
\frac{l}{a_{8}}(2+\sqrt{2}) \\
\therefore \quad W &=\frac{P^{2} \rho l}{a_{8} V_{m}^{2} \cos ^{2}
\phi}(2+\sqrt{2})
\end{aligned}
\end{array}\]
\(\therefore\) Area of \(\mathrm{X}\) -section, \(a_{8}=\frac{P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}(2+\sqrt{2})\)
\[\begin{array}{l}
=2 a_{8} l+\sqrt{2} a_{8} l=a_{8} l(2+\sqrt{2}) \\
=\frac{P^{2} \rho l^{2}}{W V_{m}^{2} \cos ^{2} \phi}(2+\sqrt{2})^{2} \\
=\frac{2 \cdot 194 K}{\cos ^{2} \phi} \quad\left[\because K=\frac{4
P^{2} \rho l^{2}}{W V_{m}^{2}}\right]
\end{array}\]
Volume of conductor material required
\(3\phi\) , 3-wire system.
Maximum voltage between each phase and neutral is \(V_m/\sqrt{3}\)
RMS voltage per phase \(=\frac{V_{m}}{\sqrt{3}} \times
\frac{1}{\sqrt{2}}=\frac{V_{m}}{\sqrt{6}}\)
Power transmitted per phase \(=P/3\)
Area of \(X\) -section, \(a_{9}=\frac{2 P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}\)
\[\begin{array}{l}
=3 a_{9} l=3\left(\frac{2 P^{2} \rho l}{W V_{m}^{2} \cos ^{2}
\phi}\right) l=\frac{6 P^{2} \rho l^{2}}{W V_{m}^{2} \cos ^{2} \phi} \\
=\frac{1 \cdot 5}{\cos ^{2} \phi} \times \frac{4 P^{2} \rho
l^{2}}{W V_{m}^{2}} \\
=\frac{1 \cdot 5 K}{\cos ^{2} \phi}
\end{array}\]
Volume of conductor material required
\(3\phi\) , 4-wire system
If loads are balanced, then neutral wire carries no
current
system reduces to \(3\phi\) ,
3-wire except there is additional neutral wire
Comparison of Transmission Systems