Solved Problems on Super Mesh Analysis

Demonstrative Video


Problem-1

image

Solution-1


Problem-2

image

Solution-2

  • KVL in supermesh \[\begin{aligned} -10 -2I_1 - 2I_2 & =0\\ I_3-I_2 &= 2\\ I_2-I_1 &= 1 \end{aligned}\]


Problem-3

image

Solution-3

  • Solutions:

\[\begin{aligned} I_1&=7.403~\mathrm{A}\\ I_2&= 1.26~\mathrm{A}\\ I_3&= 5.97~\mathrm{A} \end{aligned}\] \[\begin{aligned} \mathrm{I_a}&=7.40 \mathrm{~A} \quad \mathrm{I_b}=5.97 \mathrm{~A}\\ \mathrm{I_c}&=1.26 \mathrm{~A} \quad \mathrm{I_d}=-1.43 \mathrm{~A}\\ \mathrm{I_e}&=4.71 \mathrm{~A} \end{aligned}\]

,hr>

Problem-4

image

Solution-4

  • Equations: \[\begin{aligned} -6I_1-8I_2-15I_x&=0 \\ I_1-I_2& = 3 \\ -32(I_3-I_4)+15I_x-6I_3& = 0 \\ I_x &= -I_3 \\ I_4 &= V_x/8 \\ V_x & = 6I_1 \end{aligned}\]


Problem-5

image

Solution-5

  • Equations: \[\begin{aligned} 4-I_1-10I_2 & = 0\\ I_2-I_1 & = 2 \end{aligned}\]


Problem-6

image \[V_{S}=10 V,~ I_{S}=4 A,~ R_{1}=2 \Omega,~ R_{2}=6 \Omega, ~ R_{3}=1 \Omega,~ R_{4}=2 \Omega\]

Solution-6

  • Equations: \[\begin{aligned} V_s - R_1(I_1-I_2) - R_3(I_1-I_3) & = 0 \\ -R_1(I_2-I_1)-I_2R_2-I_3R_4-(I_3-I_1)R_3&=0 \\ I_3-I_2&=I_s\\ \end{aligned}\]

  • Solutions: \[\begin{aligned} I_1 &= 4.92~\mathrm{A} \\ I_2 & = 0.25~\mathrm{A}\\ I_3& = 4.25~\mathrm{A} \end{aligned}\]

\[\begin{aligned} &P_{V_{S}}=-V_{S} \times I_{1}=-49.2 \mathrm{~W} \\ &V_{I_{S}}=2 \times(0.25-4.92)+6 \times 0.25\\ &= -7.84 \mathrm{~V} \\ &P_{I_{S}}=V_{I_{S}} \times I_{S}\\ &=-7.84 \times 4=-31.36 \mathrm{~W} \end{aligned}\]


Problem-7

image

Solution-7

  • Meshes 1 and 2: Supermesh with independent common current source

  • Meshes 2 and 3: Supermesh with dependent common current source

  • The two supermesh intersect to form a larger supermesh

  • KVL in mesh-4 \[\begin{aligned} 2i_4+8(i_4-i_3)+10&=0\\ \Rightarrow 5i_4-4i_3&=-5 \end{aligned}\]