Solved Problems on Inductor Fundamentals

Demonstrative Video


Problem-1

Solution-1


Problem-2

Solution-2


Problem-3

Solution-3


Problem-4

Solution-4


Problem-5

Solution-5


Problem-6

Solution-6

\[\begin{aligned} &\mathrm{i}=\left\{\begin{array}{cl} 5 t, & 0<t<2 \mathrm{~ms} \\ 10, & 2<t<4 \mathrm{~ms} \\ 30-5 t, & 4<t<6 \mathrm{~ms} \end{array}\right. \end{aligned}\]

\[\begin{aligned} &\mathrm{v}=\mathrm{L} \frac{d i}{d t}=5 \times 10^{-3} \left\{\begin{array}{cl} 5, & 0<t<2 \mathrm{~ms} \\ 0, & 2<t<4 \mathrm{~ms} \\ -5, & 4<t<6 \mathrm{~ms} \end{array}=\left\{\begin{array}{cl} 25, & 0<t<2 \mathrm{~ms} \\ 0, & 2<t<4 \mathrm{~ms} \\ -25, & 4<t<6 \mathrm{~ms} \end{array}\right.\right. \\ &\\ &\text { At } \mathrm{t}=1 \mathrm{~ms}, \mathrm{v}=25 \mathrm{~V} \\ &\text { At } \mathrm{t}=3 \mathrm{~ms}, \mathrm{v}=0 \mathrm{~V}\\ &\text { At } \mathrm{t}=5 \mathrm{~ms}, \mathrm{v}=-25 \mathrm{~V} \end{aligned}\]


Problem-7

Solution-7

image


Problem-8

Solution-8


Problem-9

Solution-9

(a) \[i(t)=\frac{1}{L} \int_{0}^{t} v(t) d t^{\prime}+i_{L}(t)\] For \(v(t)=5 \mathrm{~V}\), \[\begin{aligned} i(t) &=\frac{1}{0.006} \int_{0}^{t} 5 d t^{\prime}+0 \\ &=\frac{1}{0.006}(5 t) \end{aligned}\] Thus, \[i(t)=833.33 t \mathrm{~A}\]

(b) - For \(v(t)=100 \sin (120 \pi t) \mathrm{V}\), \[\begin{aligned} i(t) &=\frac{1}{0.006} \int_{0}^{t} 100 \sin (120 \pi t) d t^{\prime}+0 \\ &=\left.\frac{1}{0.006}\left(-\frac{100}{120 \pi} \cos \left(120 \pi t^{\prime}\right)\right)\right|_{0} ^{t} \end{aligned}\] Thus, \[i(t)=\frac{138.89}{\pi}(1-\cos (120 \pi t)) \text { A } \quad t \geq 0\]


Problem-10

Solution-10