Master Circuit Analysis with Transfer Functions

Demonstrative Video


Transfer Function

\[\boxed{H(s) = \dfrac{Y(s)}{X(s)}}\] image


TF in Circuit Analysis

\[\begin{aligned} Y(s) & = H(s) \cdot X(s) \\ \text{Special case : }~x(t) & = \delta(t)~ \Leftarrow ~ \text{Unit impulse function}\\ \Rightarrow ~ X(s) & = 1\\ \Rightarrow ~ Y(s) & = H(s) ~ \quad ~ \Rightarrow \boxed{y(t) = h(t) = \mathcal{L}^{-1}[H(s)]} \end{aligned}\]


Problem

Solution :

\[\begin{aligned} x(t) & = e^{-t}u(t) \quad \Rightarrow X(s) = \dfrac{1}{s+1}\\ y(t) & = 10e^{-t} \cos 4t u(t) \quad \Rightarrow Y(s) = \dfrac{10(s+1)}{(s+1)^2+4^2} \\ H(s) & = \dfrac{Y(s)}{X(s)} = \dfrac{10(s^2+2s+1)}{s^2+2s+17} \\ \Rightarrow~h(t) & = 10\delta(t)-40e^{-t}\sin 4t u(t) \end{aligned}\]


Problem

  • Find the transfer function \(H(s) = V_0(s)/I_0(s)\) of the circuit ?

image

Solution: \[\begin{gathered} I_{2}=\frac{(s+4) I_{o}}{s+4+2+1 / 2 s} \\ V_{o}=2 I_{2}=\frac{2(s+4) I_{o}}{s+6+1 / 2 s} \\ H(s)=\frac{V_{o}(s)}{I_{o}(s)}=\frac{4 s(s+4)}{2 s^{2}+12 s+1} \end{gathered}\]


Poles and Zeros of the TF


S-plane

  • The zeros and poles are often located in the s-plane

image


Problem

Draw the pole-zero diagram of the impedance transformed function \[Z(s)=\frac{s\left(s^{2}+3\right)\left(s^{2}+7\right)}{\left(s^{2}+1\right)\left(s^{2}+5\right)}\]

Solution:

For poles, denominator \(=0\) \[\begin{aligned} & \left(s^{2}+1\right)\left(s^{2}+5\right)=0 \\ & s^{2}=-1 \quad s^{2}=-5 \\ & s=\pm j \quad s=\pm j \sqrt{5} \\ & s=\pm j \quad \pm j 2.24 \end{aligned}\] For zeros, numerator \(=0\) \[\begin{aligned} & s\left(s^{2}+3\right)\left(s^{2}+7\right)=0 \\ & s=0, s^{2}=-3 \quad s^{2}=-7 \\ & s=0, \quad s=\pm j \sqrt{3} \quad s=\pm j \sqrt{7} \\ & s=0 \quad \pm j 1.732 \quad \pm j 2.65 \end{aligned}\]

image