Forced or steady-state response of circuits to sinusoidal inputs can be obtained by using phasor.
Covered Ohm’s and Kirchhoff’s laws for ac circuits.
Nodal analysis, mesh analysis, Thevenin’s theorem, Norton’s theorem, superposition, and source transformations in ac circuits.
Techniques already introduced for dc circuits.
Illustration with examples.
Find ixix using Nodal analysis?
20cos4t⇒20∠0∘ω=4 rad/s1H⇒jωL=j40.5H⇒jωL=j20.1 F⇒1jωC=−j2.5
20−V110=V1−j2.5+V1−V2j4⇒(1+j1.5)V1+j2.5V2=202Ix+V1−V2j4=V2j2⇒2V1−j2.5+V1−V2j4=V2j2⇒11V1+15V2=0Ix=V1/−j2.5[1+j1.5j2.51115][V1V2]=[200]⇒V1=18.97∠18.43∘VV2=13.91∠198.3∘VIx=V1−j2.5=18.97∠18.43∘2.5∠−90∘=7.59∠108.4∘A⇒ix=7.59cos(4t+108.4∘)A
Compute V1 and V2 ?
3=V1−j3+V2j6+V212V1=V2+10∠45∘
V1=25.78∠−70.48∘VV2=31.41∠−87.18∘V
Determine the current I0 using
Mesh analysis ?
(8+j10−j2)I1−(−j2)I2−j10I3=0(4−j2−j2)I2−(−j2)I1−(−j2)I3+20∠90∘=0 For mesh 3,I3=5. (8+j8)I1+j2I2=j50j2I1+(4−j4)I2=−j20−j10[8+j8j2j24−j4][I1I2]=[j50−j30]I2=6.12∠−35.22∘AIo=−I2=6.12∠144.78∘A
Determine V0 using mesh
analysis?
−10+(8−j2)I1−(−j2)I2−8I3=0I2=−3(8−j4)I3−8I1+(6+j5)I4−j5I2=0I4=I3+4
I1=3.618∠274.5∘AVo=−j2(I1−I2)=9.756∠222.32∘V