Natural Response of Series RLC Circuits

Demonstrative Video


Series RLC Circuit without Source


Second Order Circuits or RLC Circuits

image

image
image


Finding Initial and Final Values


Solved Problem

The switch has been closed for a long time and open at \(t=0\). Find: (a) \(i\left(0^{+}\right), v\left(0^{+}\right)\), (b) \(d i\left(0^{+}\right) / d t, d v\left(0^{+}\right) / d t\), (c) \(i(\infty), v(\infty)\). image

image \[\begin{aligned} &i\left(0^{-}\right)=\frac{12}{4+2}=2 \mathrm{~A}, \quad v\left(0^{-}\right)=2 i\left(0^{-}\right)=4 \mathrm{~V} \\ &i\left(0^{+}\right)=i\left(0^{-}\right)=2 \mathrm{~A}, \quad v\left(0^{+}\right)=v\left(0^{-}\right)=4 \mathrm{~V} \\ &i_{C}\left(0^{+}\right)=i\left(0^{+}\right)=2 \mathrm{~A} \\ &\frac{d v\left(0^{+}\right)}{d t}=\frac{i_{C}\left(0^{+}\right)}{C}=\frac{2}{0.1}=20 \mathrm{~V} / \mathrm{s} \end{aligned}\]

\[\begin{aligned} &-12+4 i\left(0^{+}\right)+v_{L}\left(0^{+}\right)+v\left(0^{+}\right)=0 \\ &\Rightarrow v_{L}\left(0^{+}\right)=12-8-4=0 \\ &\frac{d i\left(0^{+}\right)}{d t}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{0}{0.25}=0 \mathrm{~A} / \mathrm{s} \\ &i(\infty)=0 \mathrm{~A}, \quad v(\infty)=12 \mathrm{~V} \end{aligned}\]


The Source-Free Series RLC Circuit

\[\begin{aligned} v(0) &=\frac{1}{C} \int_{-\infty}^{0} i d t=V_{0} \\ i(0) &=I_{0} \end{aligned}\] image


Over-damped Case:

\[\begin{aligned} &\boxed{s_{1}, s_{2}=-\alpha\pm\sqrt{\alpha^{2}-\omega_{0}^{2}}} \quad \boxed{\alpha=\frac{R}{2 L}} \quad \boxed{\omega_{0}=\frac{1}{\sqrt{L C}}} \end{aligned}\]

image


Critically Damped Case: \[\begin{aligned} &\boxed{s_{1}, s_{2}=-\alpha\pm\sqrt{\alpha^{2}-\omega_{0}^{2}}} \quad \boxed{\alpha=\frac{R}{2 L}} \quad \boxed{\omega_{0}=\frac{1}{\sqrt{L C}}} \end{aligned}\]

\[ \begin{aligned} \frac{d^{2} i}{d t^{2}}+2 \alpha \frac{d i}{d t}+\alpha^{2} i &=0 \\ \frac{d}{d t}\left(\frac{d i}{d t}+\alpha i\right)+\alpha\left(\frac{d i}{d t}+\alpha i\right) &=0 \\ \frac{d f}{d t}+\alpha f &=0 \quad \left(f=\frac{d i}{d t}+\alpha i \right) \\ \frac{d i}{d t}+\alpha i &=A_{1} e^{-\alpha t} \quad \Leftarrow (\text{solution of}~ f)\\ e^{\alpha t} \frac{d i}{d t}+e^{\alpha t} \alpha i &=A_{1} \\ \frac{d}{d t}\left(e^{\alpha t} i\right) &=A_{1} \\ e^{\alpha t} i &=A_{1} t+A_{2} \Leftarrow \text{on Integrating}\\ i=&\left(A_{1} t+A_{2}\right) e^{-\alpha t} \end{aligned} \]

\[\boxed{ i=\left(A_{1} t+A_{2}\right) e^{-\alpha t}}\]

  • Reaches a maximum value at \(t=1/\alpha\), one time constant and then decays to zero

image


image


Peculiar properties of an RLC network


Solved Problem

Find \(i(t)\) assuming the circuit has reached steady-state at \(t=0^{-}\)

  • For \(t<0~\Rightarrow\) switch closed \(\Rightarrow\) \(C \rightarrow\) OC and \(L \rightarrow\) SC

  • At \(t=0\) \[\begin{aligned} i(0)& = \dfrac{10}{4+6}=1~A\\ v(0)&=6i(0)=6~V \end{aligned}\]

  • For \(t>0~\Rightarrow\) source-free series RLC circuit \[\begin{aligned} \alpha & = \dfrac{R}{2L} = 9 \quad \omega_0 = \dfrac{1}{\sqrt{LC}}=10\\ s_{1,2} & = -\alpha \pm \sqrt{\alpha^2-\omega_0^2}= -9 \pm j4.359 \end{aligned}\]

image
image

\[\begin{aligned} s_{1,2}&=-9 \pm j 4.359 ~\Rightarrow \alpha < \omega ~\Rightarrow \text{Under-damped} \\ i(t)&=e^{-9 t}\left(A_{1} \cos 4.359 t+A_{2} \sin 4.359 t\right) \\ i(0)&=1=A_{1} \\ \left.\frac{d i}{d t}\right|_{t=0}&=-\frac{1}{L}[R i(0)+v(0)]=-2[9(1)-6]=-6 \mathrm{~A} / \mathrm{s} \\ \frac{d i}{d t}&=-9 e^{-9 t}\left(A_{1} \cos 4.359 t+A_{2} \sin 4.359 t\right) \\ &+e^{-9 t}(4.359)\left(-A_{1} \sin 4.359 t+A_{2} \cos 4.359 t\right) \\ -6&=-9\left(A_{1}+0\right)+4.359\left(-0+A_{2}\right) \\ \Rightarrow \quad A_{2}&=0.6882 \\ i(t)&=e^{-9 t}(\cos 4.359 t+0.6882 \sin 4.359 t) \mathrm{A} \end{aligned}\]