Power Factor Correction

Demonstrative Video


Conservation of AC Power

image

\[\begin{aligned} \mathbf{I} &=\mathbf{I}_{1}+\mathbf{I}_{2} \\ \mathbf{S} &=\mathbf{V I}^{*} \\ &=\mathbf{V}\left(\mathbf{I}_{1}^{*}+\mathbf{I}_{2}^{*}\right) \\ &=\mathbf{V I}_{1}^{*}+\mathbf{V I}_{2}^{*} \\ &=\mathbf{S}_{1}+\mathbf{S}_{2} \end{aligned}\] \[\begin{aligned} \mathbf{V} &=\mathbf{V}_{1}+\mathbf{V}_{2} \\ \mathbf{S} &=\mathbf{V I}^{*} \\ &=\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right) \mathbf{I}^{*} \\ &=\mathbf{V}_{1} \mathbf{I}^{*}+\mathbf{V}_{2} \mathbf{I}^{*} \\ &=\mathbf{S}_{1}+\mathbf{S}_{2} \end{aligned}\]

\[\boxed{\mathbf{S} =\mathbf{S}_{1}+\mathbf{S}_{2}+\cdots+\mathbf{S}_{N}}\]


Problem

\[\begin{aligned} \mathbf{Z} &=(4+j 2)+(15-j 10)\\ &=19-j 8=20.62 \angle-22.83^{\circ} \Omega \\ \mathbf{I} &=\frac{\mathbf{V}_{s}}{\mathbf{Z}}=\frac{220 \angle 0^{\circ}}{20.62 \angle-22.83^{\circ}}\\ &=10.67 \angle 22.83^{\circ} \mathrm{A} \end{aligned}\] image

\[\begin{aligned} \mathbf{S}_{s} &=\mathbf{V}_{s} \mathbf{I}^{*}=\left(220 \angle 0^{\circ}\right)\left(10.67 \angle-22.83^{\circ}\right) \\ &=2347.4 \angle-22.83^{\circ}=(2163.5-j 910.8) \mathrm{VA}\\ \Rightarrow~\mathbf{P} & = 2163.5 \mathrm{~W} \qquad \mathbf{Q} = 910.8~ \mathrm{~VAR (leading)}. \end{aligned}\] \[\begin{aligned} \mathbf{V}_{\text {line }}=(4+j 2) \mathbf{I} &=\left(4.472 \angle 26.57^{\circ}\right)\left(10.67 \angle 22.83^{\circ}\right) \\ &=47.72 \angle 49.4^{\circ} \mathrm{V} \mathrm{rms} \\ \mathbf{S}_{\text {line }}=\mathbf{V}_{\text {line }} \mathbf{I}^{*} &=\left(47.72 \angle 49.4^{\circ}\right)\left(10.67 /-22.83^{\circ}\right) \\ &=509.2 \angle 26.57^{\circ}=455.4+j 227.7 \mathrm{VA} \\ \text { or } \quad \mathbf{S}_{\text {line }} &=|\mathbf{I}|^{2} \mathbf{Z}_{\text {line }}=(10.67)^{2}(4+j 2)=455.4+j 227.7 \mathrm{VA}\\ \Rightarrow~\mathbf{P} & = 455.4 \mathrm{~W} \qquad \mathbf{Q} = 227.76~ \mathrm{~VAR (lagging)}. \end{aligned}\]

For the load, the voltage is \[\begin{aligned} \mathbf{V}_{L}=(15-j 10) \mathbf{I} &=\left(18.03 \angle -33.7^{\circ}\right)\left(10.67 \angle 22.83^{\circ}\right) \\ &=192.38 \angle -10.87^{\circ} \mathrm{V} \mathrm{rms} \end{aligned}\] The complex power absorbed by the load is \[\begin{aligned} \mathbf{S}_{L}=\mathbf{V}_{L} \mathbf{I}^{*} &=\left(192.38 \angle -10.87^{\circ}\right)\left(10.67 \angle -22.83^{\circ}\right) \\ &=2053 \angle-33.7^{\circ}=(1708-j 1139) \mathrm{VA}\\ \Rightarrow~\mathbf{P} & = 1708 \mathrm{~W} \qquad \mathbf{Q} = 1139~ \mathrm{~VAR (leading)}. \end{aligned}\]


Power Factor Correction

image

\[\begin{aligned} P &=S_{1} \cos \theta_{1} \\ Q_{1} &=S_{1} \sin \theta_{1}=P \tan \theta_{1} \\ Q_{2} &=P \tan \theta_{2} \\ Q_{C} &=Q_{1}-Q_{2}=P\left(\tan \theta_{1}-\tan \theta_{2}\right) \\ Q_{C} &=V_{\mathrm{rms}}^{2} / X_{C}=\omega C V_{\mathrm{rms}}^{2} \end{aligned}\] image

\[\begin{aligned} C &=\frac{Q_{C}}{\omega V_{\mathrm{rms}}^{2}}=\frac{P\left(\tan \theta_{1}-\tan \theta_{2}\right)}{\omega V_{\mathrm{rms}}^{2}} \\ Q_{L} &=\frac{V_{\mathrm{rms}}^{2}}{X_{L}}=\frac{V_{\mathrm{rms}}^{2}}{\omega L} \Rightarrow L=\frac{V_{\mathrm{rms}}^{2}}{\omega Q_{L}} \\ Q_{L} &=Q_{1}-Q_{2} \end{aligned}\]


Problem