Laplace Transform: Solving ODEs

Demonstrative Video


Introduction

image


Definition of the Laplace Transform

  • Region of convergence: \[\mathrm{Re}(s) = \sigma > \sigma_c \Rightarrow |F(s)| < \infty\]

image


Problem

Determine the Laplace transform of the given functions? \[\begin{aligned} \mathcal{L}[u(t)] &=\int_{0^{-}}^{\infty} 1 e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}=-\frac{1}{s}(0)+\frac{1}{s}(1)=\frac{1}{s} \\ \mathcal{L}\left[e^{-a t} u(t)\right] &=\int_{0^{-}}^{\infty} e^{-a t} e^{-s t} d t=-\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{0} ^{\infty}=\frac{1}{s+a} \\ \mathcal{L}[\delta(t)] &=\int_{0^{-}}^{\infty} \delta(t) e^{-s t} d t=e^{-0}=1 \\ \mathcal{L}[\sin \omega t] &=\int_{0}^{\infty}(\sin \omega t) e^{-s t} d t=\int_{0}^{\infty}\left(\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}\right) e^{-s t} d t \\ &=\frac{1}{2 j} \int_{0}^{\infty}\left(e^{-(s-j \omega) t}-e^{-(s+j \omega) t}\right) d t \\ &=\frac{1}{2 j}\left(\frac{1}{s-j \omega}-\frac{1}{s+j \omega}\right)=\frac{\omega}{s^{2}+\omega^{2}} \end{aligned}\]


Properties of the Laplace Transform

  • Linearity : \[ \mathcal{L}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} F_{1}(s)+a_{2} F_{2}(s) \]

  • Scaling : \[\mathcal{L}[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right)\]

  • Time Shift: \[\mathcal{L}[f(t-a) u(t-a)]=e^{-a s} F(s)\]

  • Frequency Shift : \[\mathcal{L}\left[e^{-a t} f(t) u(t)\right]=F(s+a)\]

  • Time Differentiation : \[ \begin{aligned} \mathcal{L}\left[\frac{d^{n} f}{d t^{n}}\right]=& s^{n} F(s)-s^{n-1} f\left(0^{-}\right) \\ &-s^{n-2} f^{\prime}\left(0^{-}\right)-\cdots-s^{0} f^{(n-1)}\left(0^{-}\right) \end{aligned} \]

  • Time Integration : \[\mathcal{L}\left[\int_{0}^{t} f(t) d t\right]=\frac{1}{s} F(s)\]

  • Initial and Final values : \[\begin{aligned} &f(0)=\lim _{s \rightarrow \infty} s F(s) \\ &f(\infty)=\lim _{s \rightarrow 0} s F(s) \end{aligned}\]

image


Problems


Problem-1

Find the Laplace transform of \(f(t)\) ?

\[\begin{aligned} f(t) &=\delta(t)+2 u(t)-3 e^{-2 t} u(t) \\ F(s) &=\mathcal{L}[\delta(t)]+2 \mathcal{L}[u(t)]-\\ & \qquad 3 \mathcal{L}\left[e^{-2 t} u(t)\right] \\ &=1+2 \frac{1}{s}-3 \frac{1}{s+2}\\ &=\frac{s^{2}+s+4}{s(s+2)} \end{aligned}\] \[\begin{aligned} &f(t)=t^{2} \sin 2 t u(t) \\ &\mathcal{L}[\sin 2 t]=\frac{2}{s^{2}+2^{2}} \end{aligned}\] Using frequency differentiation \[\begin{aligned} & F(s)=\mathcal{L}\left[t^{2} \sin 2 t\right] \\ &=(-1)^{2} \frac{d^{2}}{d s^{2}}\left(\frac{2}{s^{2}+4}\right) \\ &=\frac{d}{d s}\left(\frac{-4 s}{\left(s^{2}+4\right)^{2}}\right)\\ &=\frac{12 s^{2}-16}{\left(s^{2}+4\right)^{3}} \end{aligned}\]


Problem-2

Find the Laplace transform of graphical \(f(t)\) ? image \[g(t)=10[u(t-2)-u(t-3)]\] Using the time-shift property, \[\begin{aligned} G(s) &=10\left(\frac{e^{-2 s}}{s}-\frac{e^{-3 s}}{s}\right)\\ &=\frac{10}{s}\left(e^{-2 s}-e^{-3 s}\right) \end{aligned}\] image \[\begin{aligned} f_{1}(t) &=2 t[u(t)-u(t-1)] \qquad (T=2)\\ &=2 t u(t)-2 t u(t-1) \\ &=2 t u(t)-2(t-1+1) u(t-1) \\ &=2 t u(t)-2(t-1) u(t-1)\\ & \qquad -2 u(t-1)\\ F_{1}(s)&=\frac{2}{s^{2}}-2 \frac{e^{-s}}{s^{2}}-\frac{2}{s} e^{-s}\\ & =\frac{2}{s^{2}}\left(1-e^{-s}-s e^{-s}\right)\\ F(s)&=\frac{F_{1}(s)}{1-e^{-T s}}\\ &=\frac{2}{s^{2}\left(1-e^{-2 s}\right)}\left(1-e^{-s}-s e^{-s}\right) \end{aligned}\]

\[\begin{aligned} &\text { Find the initial and final values of the function whose Laplace transform is }\\ &H(s)=\frac{20}{(s+3)\left(s^{2}+8 s+25\right)}\\ &h(0)=\lim _{s \rightarrow \infty} s H(s)=\lim _{s \rightarrow \infty} \frac{20 s}{(s+3)\left(s^{2}+8 s+25\right)}\\ &=\lim _{s \rightarrow \infty} \frac{20 / s^{2}}{(1+3 / s)\left(1+8 / s+25 / s^{2}\right)}=\frac{0}{(1+0)(1+0+0)}=0\\ &h(\infty)=\lim _{s \rightarrow 0} s H(s)=\lim _{s \rightarrow 0} \frac{20 s}{(s+3)\left(s^{2}+8 s+25\right)}\\ &=\frac{0}{(0+3)(0+0+25)}=0 \end{aligned}\]