Solving Circuits Using Laplace Transform

Demonstrative Video


Introduction


Circuit analysis with Laplace transforms

  • Transform the circuit from the time domain to the s-domain.

  • Solve the circuit using any circuit analysis technique

  • Take the inverse transform of the solution to convert in the time domain.

image


Circuit Element Models

image \[\begin{array}{lll} {\color{magenta}{\textbf{ Resistor: }}} & V(s)=R I(s) & Z(s)=R \\ {\color{blue}{\textbf{Inductor: }}} & V(s)=s L I(s) & Z(s)=s L \\ {\color{red}{\textbf{Capacitor: }}} & V(s)=\dfrac{1}{s C} I(s) & Z(s)=\dfrac{1}{s C} \end{array}\]

  • LT in circuit analysis facilitates the use of various signal sources such as impulse, step, ramp, exponential, and sinusoidal.


Problem

  • Find \(v_0(t)\) assuming zero initial conditions.

image

\[\begin{aligned} u(t) & \Rightarrow \frac{1}{s} \quad 1 \mathrm{H} \Rightarrow \quad s L=s \\ \frac{1}{3} \mathrm{~F} \quad & \Rightarrow \quad \frac{1}{s C}=\frac{3}{s} \\ \end{aligned}\] image

\[\begin{aligned} {\color{magenta}{\textbf{Mesh-1}}}~~\frac{1}{s} &=\left(1+\frac{3}{s}\right) I_{1}-\frac{3}{s} I_{2} \\ {\color{magenta}{\textbf{Mesh-2}}}~~0 &=-\frac{3}{s} I_{1}+\left(s+5+\frac{3}{s}\right) I_{2} \\ V_{o}(s) &=s I_{2}=\frac{3}{s^{2}+8 s+18}=\frac{3}{\sqrt{2}} \frac{\sqrt{2}}{(s+4)^{2}+(\sqrt{2})^{2}} \\ v_{o}(t) &=\frac{3}{\sqrt{2}} e^{-4 t} \sin \sqrt{2 t} \mathrm{~V}, \quad t \geq 0 \end{aligned}\]


Problem

  • Find \(v_0(t)\) assuming \(v_0(0)=5\) V

image

\[\begin{aligned} & Cv_0 = 0.5~\mathrm{A}~\text{Initial current} \\ & {\color{magenta}{\textbf{Nodal analysis}}} \\ &\frac{10 /(s+1)-V_{o}}{10}+2+0.5=\frac{V_{o}}{10}+\frac{V_{o}}{10 / s} \\ &V_{o}=\frac{25 s+35}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2} \end{aligned}\] image

\[\begin{aligned} &A=\left.(s+1) V_{o}(s)\right|_{s=-1}=\left.\frac{25 s+35}{(s+2)}\right|_{s=-1}=\frac{10}{1}=10 \\ &B=\left.(s+2) V_{o}(s)\right|_{s=-2}=\left.\frac{25 s+35}{(s+1)}\right|_{s=-2}=\frac{-15}{-1}=15 \\ &V_{o}(s)=\frac{10}{s+1}+\frac{15}{s+2} \quad \Rightarrow ~~ v_{o}(t)=\left(10 e^{-t}+15 e^{-2 t}\right) u(t) \mathrm{V} \end{aligned}\]


Problem

  • Find \(v_c(t)\) assuming image \[\begin{aligned} v_s(t)&=10u(t) ~\mathrm{V}\\ i_L(0)&=-1~\mathrm{A} \\ v_c(0)&=5 ~\mathrm{V} \end{aligned}\]

image

\[\begin{aligned} &\frac{V_{1}-10 / s}{10 / 3}+\frac{V_{1}-0}{5 s}+\frac{i(0)}{s}+\frac{V_{1}-[v(0) / s]}{1 /(0.1 s)}=0 \\ &0.1\left(s+3+\frac{2}{s}\right) V_{1}=\frac{3}{s}+\frac{1}{s}+0.5 \\ &V_{1}=\frac{40+5 s}{(s+1)(s+2)}=\frac{35}{s+1}-\frac{30}{s+2} \qquad \Rightarrow ~ v_{1}(t)=\left(35 e^{-t}-30 e^{-2 t}\right) u(t) \mathrm{V} \end{aligned}\]


Problem

  • Find \(V_0(s)\) using Thevenin’s theorem assuming no intial energy stored at \(t=0\) and \(i_s=10u(t)\) A.

image

image

\[V_{oc} = V_{Th} = 5\left(\dfrac{10}{s}\right) = \dfrac{50}{s}\]

image \[\begin{aligned} &I_{x}=\frac{V_{1}}{2 s} \\ &-\frac{10}{s}+\frac{\left(V_{1}-2 I_{x}\right)-0}{5}+\frac{V_{1}-0}{2 s}=0 \\ &V_{1}=\frac{100}{2 s+3} \\ &I_{\mathrm{sc}}=\frac{V_{1}}{2 s}=\frac{100 /(2 s+3)}{2 s}=\frac{50}{s(2 s+3)} \\ &Z_{\mathrm{Th}}=\frac{V_{\mathrm{oc}}}{I_{\mathrm{sc}}}=\frac{50 / s}{50 /[s(2 s+3)]}=2 s+3 \end{aligned}\]

\[\begin{aligned} V_{o}&=\frac{5}{5+Z_{\mathrm{Th}}} V_{\mathrm{Th}}\\ &=\frac{5}{5+2 s+3}\left(\frac{50}{s}\right)\\ &=\frac{250}{s(2 s+8)}=\frac{125}{s(s+4)} \end{aligned}\] image \[\begin{aligned} V_{o} &=\frac{31.25}{s}-\frac{31.25}{s+4} \\ v_{o}(t) &=31.25\left(1-e^{-4 t}\right) u(t) \mathrm{V} \end{aligned}\]