Balanced Three-Phase Circuits

Demonstrative Video


Introduction


Polyphase System

image


Advantages of \(3-\phi\) System over \(1-\phi\) System

For same Electric power:


Balanced Three-Phase Voltages

image

  • A \(3\phi\) system \(\sim\) \(3 \times 1\phi\) circuits.

  • The voltage sources can be either Y-connected or delta-connected.

  • \(\mathbf{V_{an}}\), \(\mathbf{V_{bn}}\), \(\mathbf{V_{cn}}\) \(\Rightarrow\) Phase voltages

image

\[\begin{aligned} &\mathbf{V}_{a n}+\mathbf{V}_{b n}+\mathbf{V}_{c n}=0\\ &\left|\mathbf{V}_{a n}\right|=\left|\mathbf{V}_{b n}\right|=\left|\mathbf{V}_{c n}\right|\\ &\mathbf{V}_{a n}=V_{p} \angle 0^{\circ}\\ &\mathbf{V}_{b n}=V_{p} \angle -120^{\circ}\\ &\mathbf{V}_{c n}=V_{p} \angle-240^{\circ}=V_{p} \angle+120^{\circ} \end{aligned}\]

  • abc or positive sequence

  • produced when rotor rotates counter-clockwise

image \[\begin{aligned} &\mathbf{V}_{a n}=V_{p} \angle 0^{\circ}\\ &\mathbf{V}_{c n}=V_{p} \angle -120^{\circ}\\ &\mathbf{V}_{b n}=V_{p} \angle-240^{\circ}=V_{p} \angle+120^{\circ} \end{aligned}\]

  • acb or negative sequence

  • produced when rotor rotates clockwise

\[\begin{aligned} \mathbf{V}_{a n}+\mathbf{V}_{b n}+\mathbf{V}_{c n} &=V_{p} \angle 0^{\circ}+V_{p} \angle-120^{\circ}+V_{p} \angle+120^{\circ} \\ &=V_{p}(1.0-0.5-j 0.866-0.5+j 0.866) \\ &=0 \end{aligned}\]

  • A balanced load is one in which the phase impedances are equal in magnitude and in phase.

  • For Balanced Loads: \[\begin{aligned} &\mathbf{Z}_{1}=\mathbf{Z}_{2}=\mathbf{Z}_{3}=\mathbf{Z}_{Y} \\ &\mathbf{Z}_{a}=\mathbf{Z}_{b}=\mathbf{Z}_{c}=\mathbf{Z}_{\Delta} \\ &\mathbf{Z}_{\Delta}=3 \mathbf{Z}_{Y} \quad \text { or } \quad \mathbf{Z}_{Y}=\frac{1}{3} \mathbf{Z}_{\Delta} \end{aligned}\]

image

  • Source-Load Combinations:

    • \(Y-Y\)

    • \(Y-\Delta\)

    • \(\Delta-Y\)

    • \(\Delta - \Delta\)


Problem

Determine the phase sequence of the set of voltages \[\begin{gathered} v_{a n}=200 \cos \left(\omega t+10^{\circ}\right) \\ v_{b n}=200 \cos \left(\omega t-230^{\circ}\right), \quad v_{c n}=200 \cos \left(\omega t-110^{\circ}\right) \end{gathered}\] Solution:

The voltages can be expressed in phasor form as \[\mathbf{V}_{a n}=200 \angle 10^{\circ} \mathrm{V}, \quad \mathbf{V}_{b n}=200 \angle-230^{\circ} \mathrm{V}, \quad \mathbf{V}_{c n}=200 \angle-110^{\circ} \mathrm{V}\]

We notice that \(\mathbf{V}_{a n}\) leads \(\mathbf{V}_{c n}\) by \(120^{\circ}\) and \(\mathbf{V}_{c n}\) in turn leads \(\mathbf{V}_{b n}\) by \(120^{\circ}\). Hence, we have an \(acb\) sequence.