Phasor Relationships of RLC Elements

Demonstrative Video


Phasor Relationships for Circuit Elements


Summary of Relationship

image


Impedance & Admittance

image

\[\begin{gathered} \boxed{\mathbf{Z}=R+j X=|\mathbf{Z}| \angle \theta } \quad |\mathbf{Z}|=\sqrt{R^{2}+X^{2}}, \quad \theta=\tan ^{-1} \frac{X}{R} \\ \boxed{R=|\mathbf{Z}| \cos \theta} \quad \boxed{X=|\mathbf{Z}| \sin \theta} \\ \boxed{\mathbf{Y}=\frac{1}{\mathbf{Z}}=\frac{\mathbf{I}}{\mathbf{V}} }\\ \mathbf{Y}=G+j B \quad \left(G: \text{Conductance}~B: \text{Susceptance}\right) \\ G+j B=\frac{1}{R+j X} \end{gathered}\] By rationalization, \[G+j B=\frac{1}{R+j X} \cdot \frac{R-j X}{R-j X}=\frac{R-j X}{R^{2}+X^{2}}\] Equating the real and imaginary parts gives

\[\boxed{G=\frac{R}{R^{2}+X^{2}}} \quad \boxed{B=-\frac{X}{R^{2}+X^{2}}}\] \[\text{Note:}~G \neq 1/R\]