RC Circuit Behavior: Understand Natural Response

Demonstrative Video


RC Circuit without Source


Transients


First Order Circuits


Excitation of the Circuit


The Source-Free RC Circuit

  • A source-free RC circuit occurs when its dc source is suddenly disconnected.

  • Energy stored in capacitor is released to resistors.

  • \(C\) and \(R\) may come as \(C_{eq}\) and \(R_{eq}\) from a complex circuit.

image


Natural response of RC circuit

\[\begin{aligned} &\text{Initial condition}~v(0)=V_{0} \\ &\text{Initial energy}~w(0)=\frac{1}{2} C V_{0}^{2} \\ &\text{KCL}~~i_{C}+i_{R}=0 \\ &\Rightarrow~C \frac{d v}{d t}+\frac{v}{R}=0 \\ &\Rightarrow~\frac{d v}{d t}+\frac{v}{R C}=0 \\ &\Rightarrow~\frac{d v}{v}=-\frac{1}{R C} d t \\ &\Rightarrow~\ln (v)=-\frac{t}{R C}+\ln (A) \\ &\Rightarrow~\ln \left(\frac{v}{A}\right)=-\frac{t}{R C} \\ &\Rightarrow~v(t)=A \cdot e^{-t / R C} \end{aligned}\] \[\begin{aligned} &\text{Boundary condition}~v(0)=A=V_{0} \\ &\boxed{v(t)=V_0\cdot e^{-t / R C}} \end{aligned}\]

  • voltage response of the RC circuit is an exponential decay of the initial voltage.

  • At \(t=0~\Rightarrow~v(t)=V_0\)

  • As \(t~\uparrow\) \(v~\downarrow\) to zero.

  • The rapidity with which the voltage decreases is expressed in terms of the time constant (\(\tau\))

  • Time constant: Time required for the response to decay to a factor of 1/e or 36.8% of its initial value.

image

image

image

\[\begin{aligned} i_{R}(t) &=\frac{v(t)}{R}=\frac{V_{0}}{R} e^{-t / \tau} \\ p(t) &=v i_{R}=\frac{V_{0}^{2}}{R} e^{-2 t / \tau} \\ w_{R}(t) &=\int_{0}^{t} p d t=\int_{0}^{t} \frac{V_{0}^{2}}{R} e^{-2 t / \tau} d t \\ &=-\left.\frac{\tau V_{0}^{2}}{2 R} e^{-2 t / \tau}\right|_{0} ^{t}=\frac{1}{2} C V_{0}^{2}\left(1-e^{-2 t / \tau}\right), \quad \tau=R C \end{aligned}\]


Problem Solving Steps


Solved Problem

image