Kirchhoff's Laws in AC Circuits

Demonstrative Video


Kirchhoff’s Laws in the Frequency Domain


Impedance Combinations


Voltage division & Current division

Voltage division: \[\begin{aligned} &\mathbf{V}_{1}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}\\ & \mathbf{V}_{2}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V} \end{aligned}\] image

Current division \[\begin{aligned} & \mathbf{I}_{1}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I} \\ & \mathbf{I}_{2}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I} \end{aligned}\] image


STAR-DELTA Transformation

image


Problem

Find the input impedance for the circuit operating at \(\omega = 50\) rad/sec. image

\[\begin{gathered} \mathbf{Z}_{1}=\frac{1}{j \omega C}=\frac{1}{j 50 \times 2 \times 10^{-3}}=-j 10 \Omega \\ \mathbf{Z}_{2}=3+\frac{1}{j \omega C}=3+\frac{1}{j 50 \times 10 \times 10^{-3}}=(3-j 2) \Omega \\ \mathbf{Z}_{3}=8+j \omega L=8+j 50 \times 0.2=(8+j 10) \Omega \\ \mathbf{Z}_{\text {in }}=\mathbf{Z}_{1}+\mathbf{Z}_{2} \| \mathbf{Z}_{3}=-j 10+\frac{(3-j 2)(8+j 10)}{11+j 8} \\ =-j 10+\frac{(44+j 14)(11-j 8)}{11^{2}+8^{2}}=-j 10+3.22-j 1.07 \Omega \\ \mathbf{Z}_{\text {in }}=3.22-j 11.07 \Omega \end{gathered}\]