Electrical Circuits with Ohm's and Kirchhoff's Laws

Demonstrative Video


Kirchhoff’s Laws

Kirchhoff’s Current Law (KCL)

image

Kirchhoff’s Voltage Law (KVL)

image

Resistances in Series and Parallel

  • By Ohm’s law, we can write: \[\begin{aligned} v_1 & = R_1i \\ v_2 & = R_2i \\ v_3 & = R_3i \end{aligned}\]

  • Using KVL, we can write: \[\begin{aligned} v &= v_1+v_2+v_3\\ & = R_1i+R_2i+R_3i\\ & = (R_1+R_2+R_3)i\\ & = R_{eq}i \end{aligned}\]

image

  • Applying Ohm’s law: \[\begin{aligned} &i_{1}=\frac{v}{R_{1}} \\ &i_{2}=\frac{v}{R_{2}} \\ &i_{3}=\frac{v}{R_{3}} \end{aligned}\]

  • apply KCL to the top node of the circuit: \[\begin{aligned} &i=i_{1}+i_{2}+i_{3} \\ &i=\frac{v}{R_{1}}+\frac{v}{R_{2}}+\frac{v}{R_{3}} \\ &i=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) v \end{aligned}\]

image

Conductances in Series and Parallel

Circuit Analysis Using Series/Parallel Equivalents

Example of series/parallel operation

image

Voltage Divider and Current Divider Circuits

image

image

Star-Delta Transformations

image

image

  • KVL for \(\Pi\)-network

\[\begin{aligned} R_{A} i_{1}-R_{A} i_{2} & =v_{a c} \\ -R_{A} i_{1}+\left(R_{A}+R_{B}+R_{C}\right) i_{2}-R_{C} i_{3} &=0 \\ -R_{C} i_{2} +R_{C} i_{3} &=-v_{b c} \end{aligned}\]

  • KVL for T-network

\[\begin{aligned} \left(R_{1}+R_{3}\right) i_{1}-R_{3} i_{3} & &=v_{a c} \\ \quad-R_{3} i_{1}+\left(R_{2}+R_{3}\right) i_{3} & &=-v_{b c} \end{aligned}\]